Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Ян (обсуждение | вклад) (Новая страница: «Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс») |
Ян (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | + | ==Постановка задачи== | |
+ | [[File:Heat eqn.gif|thumb|Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки.]] | ||
+ | Решается однородное [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 уравнение теплопроводности] на промежутке <math>\left[a\ldots b\right]</math> | ||
+ | :<math>\frac{\partial U\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2} = f(x,t)</math> | ||
+ | С граничными условиями | ||
+ | :<math> \begin{cases} | ||
+ | U(a,t) = M1(t) \\ | ||
+ | U(b,t) = M2(t) | ||
+ | \end{cases}</math> | ||
+ | и начальным распределением температуры | ||
+ | :<math>U(x,0) = U0(x)</math> | ||
+ | *Где :<math>f(x,t), U0(x), M1(t), M2(t)</math> - Известные функции | ||
+ | |||
+ | ==Реализация== | ||
+ | ===Конечно-разностная схема=== | ||
+ | |||
+ | Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. | ||
+ | Запишем исходное уравнение в виде | ||
+ | :<math>\frac{\partial U\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2}</math> | ||
+ | |||
+ | Введем равномерную сетку <math>0 < x_i < L</math> с шагом разбиения <math>Δx</math>. Шаг по времени назовем <math>Δt</math> | ||
+ | Построим явную конечно-разностную схему: | ||
+ | :<math>\frac{U_i^{n+1}-U_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(U_{i+1}^{n} - 2U_{i}^{n}+U_{i-1}^{n}\right)</math> | ||
+ | Где, <math>U_i</math> — значение температуры в <math>i</math>-ом узле. | ||
+ | |||
+ | ==Полезные ссылки== | ||
+ | [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Уравнение теплопроводности] |
Версия 20:54, 9 декабря 2015
Постановка задачи
Решается однородное уравнение теплопроводности на промежутке
С граничными условиями
и начальным распределением температуры
- Где : - Известные функции
Реализация
Конечно-разностная схема
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде
Введем равномерную сетку
с шагом разбиения . Шаг по времени назовем Построим явную конечно-разностную схему:Где,
— значение температуры в -ом узле.