МДС: Публикации по направлениям — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Гиперболическая теплопроводность)
м (Гиперболическая теплопроводность)
Строка 32: Строка 32:
 
== Гиперболическая теплопроводность ==
 
== Гиперболическая теплопроводность ==
  
Ниже используется сокращение: МКВ (Максвелла-Каттанео-Вернотта).
+
''Ниже используется сокращение: МКВ (Максвелла-Каттанео-Вернотта).''
  
 
* [[М.Б. Бабенков]], [[Иванова Е.А.]]. '''Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type.''' Continuum Mechanics and Thermodynamics (2014), volume 26, issue 4, 483-502. ([http://link.springer.com/article/10.1007%2Fs00161-013-0315-8 Abstract], [http://www.ipme.ru/ipme/labs/dms/prive/ivanova/Home_page_Elena_Ivanova/PDF/Ba_Iv_CMT_2013.pdf pdf])
 
* [[М.Б. Бабенков]], [[Иванова Е.А.]]. '''Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type.''' Continuum Mechanics and Thermodynamics (2014), volume 26, issue 4, 483-502. ([http://link.springer.com/article/10.1007%2Fs00161-013-0315-8 Abstract], [http://www.ipme.ru/ipme/labs/dms/prive/ivanova/Home_page_Elena_Ivanova/PDF/Ba_Iv_CMT_2013.pdf pdf])

Версия 17:23, 8 августа 2015

Кафедра ТМ > Научный справочник > Механика > МДС > Публикации по направлениям

На эту страницу помещаются публикации по различным научным направлениям в механике дискретных сред, для которых пока не созано отдельной страницы.

Одномерный кристалл Леннарда-Джонса

  • A. V. Savin, Y. A. Kosevich. Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys. Rev. E (2014), volume 89, issue 3, 032102. (Abstract, pdf)
  • R. Belousov, Paolo De Gregorio, L. Rondoni, L. Conti. Statistical distribution of bonding distances in a unidimensional solid. Physica A (2014), volume 412, 19-31. (Abstract, pdf)

Задача о синусоидальном начальном возмущении температуры

  • O. V. Gendelman, R. Shvartsman, B. Madar, A. V. Savin. Nonstationary heat conduction in one-dimensional models with substrate potential. Phys. Rev. E (2012), volume 85, issue 1, 011105. (Abstract, pdf)
  • A. A. Gusev, S. A. Lurie. Wave-relaxation Duality Of Heat Propagation In Fermi-pasta-ulam Chains. Mod. Phys. Lett. B (2012), volume 26, issue 22, 1250145. Abstract
  • А. А. Ле-Захаров, А. М. Кривцов. Исследование процессов теплопроводности в кристаллах с дефектами методом молекулярной динамики. ДАН (2008), т.420, №1, с.45-49. pdf

Теплопроводность треугольной кристаллической решетки

  • R. H. H. Poetzsch, H. Böttger. Non-diffusive heat transport and chaos in non-linear dielectric lattices. Journal of Physics: Condensed Matter (1998), volume 10, number 5, 943-949. (Abstract, pdf)
  • R. H. H. Poetzsch, H. Böttger. Interplay of disorder and anharmonicity in heat conduction: Molecular-dynamics study. Phys. Rev. B (1994), volume 50, number 21, 15757. (Abstract, pdf)
  • R. D. Mountain, R. A. MacDonald. Thermal conductivity of crystals: A molecular-dynamics study of heat flow in a two-dimensional crystal. Phys. Rev. B (1983), volume 28, issue 6, 3022-3025. (Abstract, pdf)

Гиперболическая теплопроводность

Ниже используется сокращение: МКВ (Максвелла-Каттанео-Вернотта).

  • М.Б. Бабенков. Propagation of harmonic perturbations in a thermoelastic medium with heat relaxation. Journal of Applied Mechanics and Technical Physics (2013), volume 54, issue 2, 277-286. (Abstract, pdf)
  • A. Haji-Sheikh, Filippo de Monte, J. V. Beck. Temperature solutions in thin films using thermal wave Green’s function solution equation. International Journal of Heat and Mass Transfer (2013) volume 62, 78-86. Abstract (Дается вывод функции Грина для уравнения МКВ)
  • O. V. Gendelman, R. Shvartsman, B. Madar, A. V. Savin. Nonstationary heat conduction in one-dimensional models with substrate potential. Phys. Rev. E (2012), volume 85, issue 1, 011105. (Abstract, pdf)
  • A. A. Gusev, S. A. Lurie. Wave-relaxation Duality Of Heat Propagation In Fermi-pasta-ulam Chains. Mod. Phys. Lett. B (2012), volume 26, issue 22, 1250145. Abstract
  • М.Б. Бабенков. Analysis of dispersion relations of a coupled thermoelasticity problem with regard to heat flux relaxation. Journal of Applied Mechanics and Technical Physics (2011), volume 52, issue 6, 941-949. (Abstract, pdf)
  • A. Haji-Sheikh, W. J. Minkowycz, E. M. Sparrow. Certain Anomalies in the Analysis of Hyperbolic Heat Conduction. Journal of Heat Transfer (2002) volume 124, 307-319. Abstract
  • D. S. Chandrasekharaiah. Hyperbolic Thermoelasticity: A Review of Recent Literature. Appl. Mech. Rev (1998), volume 51, issue 12, 705-729. Abstract
  • Е.И. Леванов, Е.Н. Сотский. Некоторые свойства процесса теплопереноса в неподвижной среде с учётом релаксации теплового потока. ИФЖ (1986), т. 50, №6, 1017-1024. English version: E. I. Levanov, E. N. Sotskii. Some properties of the heat-transfer process in a motionless medium, taking account of heat-flux relaxation. Journal of engineering physics (1986), Volume 50, Issue 6, 733-740. Abstract (Приведено относительно простое аналитическое решение уравнения МКВ в бесконечной одномерной области, в центральной точке которой осуществляется постоянный подвод тепла. Решение явно выражено через модифицированную функцию Бесселя.)
  • Н. А. Новиков. Гиперболическое уравнение теплопроводности. Решение прямых и обратных задач для полуограниченного стержня. ИФЖ (1978), т. 35, №4, 734-740. English version: N. A. Novikov. Hyperbolic equation of thermal conductivity. Solution of the direct and inverse problems for a semiinfinite bar. Journal of engineering physics (1978), Volume 35, Issue 4, 1253-1257. Abstract (Получено аналитическое решение в виде интеграла от модифицированной функции Бесселя для уравнения МКВ в полубесконечной одномерной области, на границе которой задана температура. Решение в форме интегральной свертки, где ядро выражено через модифицированную функцию Бесселя.)
  • Y. Wang, Y. Wang, D. Liu, Q. Wang, C. Shu. Asymptotic approach to transient thermal shock problem with variable material properties. International Journal of Engineering Science (?), volume ?, issue ?, ?. pdf

Chains with self-consistent heat reservoirs

  • E. Pereira, H. C. F. Lemos, R. R. Ávila. Ingredients of thermal rectification: The case of classical and quantum self-consistent harmonic chains of oscillators. Phys. Rev. E (2011), volume 84, issue 6, 061135. (Abstract, pdf)
  • F. Bonetto, J. L. Lebowitz, J. Lukkarinen. Fourier's Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs. Journal of Statistical Physics (2004), volume 116, issue 1-4, 783-813. (Abstract, pdf)
  • M. Rich, W. M. Visscher. Disordered harmonic chain with self-consistent reservoirs. Phys. Rev. B (1975), volume 11, issue 6, 2164-2170. (Abstract, pdf)
  • M. Bolsterli, M. Rich, W. M. Visscher. Simulation of Nonharmonic Interactions in a Crystal by Self-Consistent Reservoirs. Phys. Rev. A (1970), volume 1, issue 4, 1086-1088. (Abstract, pdf)

Экспериментальное подтверждение аномального переноса тепла в двумерных структурах

  • J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. Sotomayor Torres, G. Chen, K. A. Nelson. Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane. Phys. Rev. Lett. (2013), volume 110, issue 2, 025901. (Abstract, pdf)