Простой гармонический одномерный кристалл — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(Новая страница: «Кафедра ТМ > Научный справочник > Механика > МДС >О…») |
(нет различий)
|
Версия 11:42, 9 июля 2015
Кафедра ТМ > Научный справочник > Механика > МДС >Одномерный кристалл>Простой одномерный гармонический кристалл
Одномерный кристалл с линейным взаимодействием между частицами, в котором все частицы и связи одинаковы. Наиболее простая модель в механике дискретных сред, обнаруживающая, однако, очень непростое поведение, прежде всего в задачах распространения тепла.
Уравнение движения
Динамика рассматриваемого кристалла описывается линейным дифференциально-разностным уравнением второго порядка
где
— масса частицы, — жесткость связи, — перемещение частицы с номером , точкой обозначена производная по времени.Публикации по теме
- Z. Rieder, J. L. Lebowitz and E. Lieb. Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys. 8, 1073 (1967). Abstract. (Впервые показано, что для гармонической цепочки тепловой поток не зависит от количества частиц, а равновесная температура везде, кроме окрестности краев, равна полусумме температур краевых точек).
- Hiroshi Nakazawa. On the Lattice Thermal Conduction. Prog. Theor. Phys. Supplement (1970), 45, 231-262. (Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).
- D. Roy, A. Dhar. Heat Transport in Ordered Harmonic Lattices. J Stat Phys (2008) 131: 535–541. (Получена точная формула для теплового потока в гармонической цепочке, в частных случаях воспроизводящая результаты Rieder et al. (1967) и Nakazawa (1970), исследуется также квантовый случай).
- Pereira, E., Lemos, H.C.F., Ávila, R.R. Ingredients of thermal rectification: The case of classical and quantum self-consistent harmonic chains of oscillators. Phys. Rev. E 84, 061135 (2011) [7 pages]. (Для гармонической цепочки показано, что тепловой поток не зависит от градиента температуры в классическом и зависит в квантовом случае).