Ибраев Д.Ф.: Исследование динамики удара частиц в присутствии жидкой фазы для описания грануляционных процессов — различия между версиями
Динар (обсуждение | вклад) |
Динар (обсуждение | вклад) |
||
Строка 131: | Строка 131: | ||
В ABAQUS моделировался удар частицы о твердую поверхность. Для уменьшения времени вычисления был рассмотрен сектор шара с заданными на плоских гранях условиями симметрии. Были заданы следующие условия: начальная скорость падения шара, условие гравитации и контактное взаимодействие шара и стенки. Количество элементов в модели составляло 2162. | В ABAQUS моделировался удар частицы о твердую поверхность. Для уменьшения времени вычисления был рассмотрен сектор шара с заданными на плоских гранях условиями симметрии. Были заданы следующие условия: начальная скорость падения шара, условие гравитации и контактное взаимодействие шара и стенки. Количество элементов в модели составляло 2162. | ||
[[Файл:Ibraev_Abaqus.png|200px|thumb|left|Модель в Abaqus]] | [[Файл:Ibraev_Abaqus.png|200px|thumb|left|Модель в Abaqus]] | ||
− | + | [[Файл:Ibraev_Stargu.png|200px|thumb|right|Модель в Star]] | |
В STAR-CCM+ была построена модель взаимодействия частицы с жидкостью. Для моделирования свободной поверхности жидкости был | В STAR-CCM+ была построена модель взаимодействия частицы с жидкостью. Для моделирования свободной поверхности жидкости был | ||
использован метод объема жидкости (VOF), определяющий взаимодействие воздуха и воды. В модели были созданы две области: сектор полого шара и область для жидкости. Между этими областями создается интерфейс перекрывающейся сетки. Это объемный тип интерфейса, который обеспечивает соединение решений расчетных областей, используя автоматически создаваемый набор замещаемых ячеек в одной области и замещающих в другой. Переменные величины в заменяемых ячейках замещаются переменными величинами в заменяющих ячейках, используя интерполяцию. | использован метод объема жидкости (VOF), определяющий взаимодействие воздуха и воды. В модели были созданы две области: сектор полого шара и область для жидкости. Между этими областями создается интерфейс перекрывающейся сетки. Это объемный тип интерфейса, который обеспечивает соединение решений расчетных областей, используя автоматически создаваемый набор замещаемых ячеек в одной области и замещающих в другой. Переменные величины в заменяемых ячейках замещаются переменными величинами в заменяющих ячейках, используя интерполяцию. | ||
Так же как и в ABAQUS, в STAR-CCM+ решается симметричная задача: условия симметрии на плоских гранях шара и на двух границах области жидкости. На внутреннюю поверхность полого шара задаются условие стенки и перемещения, полученные с ABAQUS. Эта поверхность будет взаимодействовать с жидкостью. На внешнюю поверхность шара задается условие перекрывающейся сетки. На остальных поверхностях шара задается условие ”плавающей” динамической сетки, которая позволяет поверхностям двигаться вместе с шаром. На нижней границе области жидкости задается условие стенки, на остальных границах — условие плоской волны. | Так же как и в ABAQUS, в STAR-CCM+ решается симметричная задача: условия симметрии на плоских гранях шара и на двух границах области жидкости. На внутреннюю поверхность полого шара задаются условие стенки и перемещения, полученные с ABAQUS. Эта поверхность будет взаимодействовать с жидкостью. На внешнюю поверхность шара задается условие перекрывающейся сетки. На остальных поверхностях шара задается условие ”плавающей” динамической сетки, которая позволяет поверхностям двигаться вместе с шаром. На нижней границе области жидкости задается условие стенки, на остальных границах — условие плоской волны. | ||
− | |||
Количество расчетных элементов в модели составляло 164000, количество итераций 20, временной шаг сопряжения e-5 c. | Количество расчетных элементов в модели составляло 164000, количество итераций 20, временной шаг сопряжения e-5 c. | ||
В ABAQUS моделировался удар частицы о твердую поверхность, в STAR-CCM+ – взаимодействие частицы с жидкостью. В качестве материала использовалось стекло:<math>\rho_p=2500</math> кг/м<math>^3</math>, <math>E=71.4</math> ГПа, <math>\nu=0.25</math>. | В ABAQUS моделировался удар частицы о твердую поверхность, в STAR-CCM+ – взаимодействие частицы с жидкостью. В качестве материала использовалось стекло:<math>\rho_p=2500</math> кг/м<math>^3</math>, <math>E=71.4</math> ГПа, <math>\nu=0.25</math>. |
Версия 19:04, 19 июня 2014
Содержание
Описание
Данная работа выполнена в рамках Гамбургского проекта при поддержке стипендиальной программы "Леонард Эйлер" немецкой службы академических обменов (DAAD).
Руководители
Руководитель со стороны СПбГПУ: к.ф.-м.н И.Е. Беринский
Руководители со стороны TUHH: Dipl.-Ing. V. Salikov, Prof. Dr.-Ing. S. Antonyuk
Аннотация
Грануляция традиционно считается эмпирическим искусством с большими трудностями в прогнозировании и объяснении наблюдаемых процессов. Промышленность столкнулась с рядом проблем, включая большой процент утилизации, плохой контроль качества продукции, большие расхождения при переходе от лабораторных гранулирующих устройств к промышленным. При условии, что известны соответствующие свойства материала и рабочие параметры, в настоящее время можно сделать полезные предположения о том, как из порошка формируются гранулы.
Содержание жидкой фазы при грануляции влияет на свойства столкновений между частицами. Во время этого процесса из-за увлажнения частиц (покрытие частиц жидкой пленкой или каплями) при соударении происходит потеря начальной энергии частиц, которую можно описать с помощью коэффициента восстановления. Реализация соударения двух частиц в лабораторных условиях является технически сложной задачей, поэтому рассматривается удар частицы о смоченную твердую поверхность.
Данная работа состоит из экспериментальной части, аналитического исследования и численного моделирования. В результате серии экспериментов определены коэффициенты восстановления при прямом ударе частиц о твердую поверхность, покрытую тонким слоем жидкости. Рассматривались удары частиц о смоченную поверхность и сухие удары, варьировались скорость частицы до удара и толщина слоя жидкости. Построена аналитическая модель для определения коэффициента восстановления при ударе. Проведено численное моделирование процесса удара с использованием сопряжения ABAQUS и STAR-CCM+. Результаты аналитического и численного моделирования с достаточно высокой точностью совпадают с экспериментальными данными.
Полученные результаты будут использованы при численном моделировании процесса грануляции с последующей разработкой гранулирующего устройства.
Аналитическая модель
В процессе удара частицы о смоченную поверхность на частицы действуют следующие силы: капиллярная сила, сила вязкости, сила сопротивления, сила при контакте частицы со свободной поверхностью жидкости и твердой поверхностью стенки, сила Архимеда и сила тяжести. При моделировании было принято, что влиянием таких сил, как сила вязкости, сопротивления и Архимеда можно пренебречь, исходя из результатов работы [1].
Закон сохранения энергии для частицы в процессе удара примет вид:
где
- скорости частиц до удара и после соответственно, - масса частицы, - суммарная масса частицы и жидкости, присоединенной к частице, - объем жидкости на частице после удара, - толщина слоя жидкости на частице после удара, - потеря энергии при ударе.Коэффициент восстановления частицы при столкновении со стенкой можно записать следующим образом:
Потеря энергии
:
где
- работа капиллярных сил, и - энергия, затраченная на удар частицы о свободную поверхность жидкости и удар о стенку соответственно.Выражение для капиллярной силы
было получено в работе [2]. Работа выражается следующим образом:
где
- расстояние между сферой и стенкой, - коэффициент поверхностного натяжения, - объем жидкого мостика, - радиус смоченной области и .В научной работе [4] было получено следующее соотношение мгновенной кинетической энергии жидкости, окружающей частицу, при первоначальном контакте в терминах безразмерного времени
и малого параметра [4]:где
- радиус частицы, - плотность жидкости, , - мгновенный угол расположения частицы ниже свободной поверхности жидкости.При выводе выражения для
было сделано предположение, что на начальной стадии удара частицы о свободную поверхность жидкости инерционные силы доминируют над силами поверхностного натяжения, гравитации, вязкого взаимодействия и эффектов сжимаемости.Известно, что гидродинамическая нагрузка на частицу, проникающую в жидкость, достигает своего максимума при относительно малых значениях безразмерного времени. В рамках предположений можно считать максимальную кинетическую энергию жидкости вблизи частицы
равным диссипации энергии частицы при ударе о свободную поверхность жидкости:
Потеря энергии при контакте с твердой поверхностью:
где
- коэффициент восстановления при сухом ударе.Таким образом, был определен коэффициент восстановления для стеклянного шарика при ударе о стенку, покрытую слоем воды. Коэффициент восстановления растет с увеличением скорости удара и выходит на постоянное значение при определенной скорости. C ростом толщины слоя жидкости коэффициент
понижается вследствие растяжения жидкого мостика при отскоке.Эксперимент
В лаборатории Гамбургского технического университета была собрана экспериментальная установка для определения коэффициента восстановления
.Перед падением частица закреплена с помощью вакуумного пинцета. Текущая толщина слоя воды контролировалась с помощью конфокального сенсора. Скорости частиц при падении и отскоке были получены с помощью высокоскоростной камеры №1, которая производила съемку с кадровой частотой 8000 к/с области с разрешением 192x176 пикселей. Камера №2 с теми же характеристиками располагается в верхней части установки и фиксирует движение частицы в плоскости платы.
Обработка изображений, полученных с камер, проводилась с помощью программного кода, написанного в среде MATLAB. Программа была написана сотрудником Гамбургского технического университета (TUHH) S. Antonyuk. В данной работе программа была модернизирована для использования двух камер. Так же были добавлены фильтры по улучшению изображения при обработке и автоматизирован вывод данных. Эта программа импортирует изображения с камер, переводит их в двоичные изображения, вычисляет центр масс и строит траекторию частицы.
Удар частицы при определенной скорости падения и толщине слоя проводился порядка 100 раз и было подсчитано среднее значение
. На графике вертикальные отрезки представляют собой стандартное отклонение. С увеличением скорости падения частицы коэффициент восстановления растет. Также был найден сухой коэффициент восстановления , который с ростом скорости не меняется. С увеличением толщины слоя жидкости величина значительно уменьшается. Это вызвано более длительной диссипацией энергии при погружении в слой и растяжением жидкого мостика.Аналитические результаты хорошо согласуются с экспериментальными данными. Было получено, что расхождения составляют не более 5%, поэтому аналитическую модель можно использовать при анализе задачи в описанной постановке.
Численное моделирование
Проведено численное моделирование процесса удара с использованием сопряжения ABAQUS и STAR-CCM+, что позволило учесть такие эффекты, как смачивание частицы, вязкость жидкости, сила сопротивления и сила Архимеда.
В ABAQUS моделировался удар частицы о твердую поверхность. Для уменьшения времени вычисления был рассмотрен сектор шара с заданными на плоских гранях условиями симметрии. Были заданы следующие условия: начальная скорость падения шара, условие гравитации и контактное взаимодействие шара и стенки. Количество элементов в модели составляло 2162.
В STAR-CCM+ была построена модель взаимодействия частицы с жидкостью. Для моделирования свободной поверхности жидкости был использован метод объема жидкости (VOF), определяющий взаимодействие воздуха и воды. В модели были созданы две области: сектор полого шара и область для жидкости. Между этими областями создается интерфейс перекрывающейся сетки. Это объемный тип интерфейса, который обеспечивает соединение решений расчетных областей, используя автоматически создаваемый набор замещаемых ячеек в одной области и замещающих в другой. Переменные величины в заменяемых ячейках замещаются переменными величинами в заменяющих ячейках, используя интерполяцию. Так же как и в ABAQUS, в STAR-CCM+ решается симметричная задача: условия симметрии на плоских гранях шара и на двух границах области жидкости. На внутреннюю поверхность полого шара задаются условие стенки и перемещения, полученные с ABAQUS. Эта поверхность будет взаимодействовать с жидкостью. На внешнюю поверхность шара задается условие перекрывающейся сетки. На остальных поверхностях шара задается условие ”плавающей” динамической сетки, которая позволяет поверхностям двигаться вместе с шаром. На нижней границе области жидкости задается условие стенки, на остальных границах — условие плоской волны. Количество расчетных элементов в модели составляло 164000, количество итераций 20, временной шаг сопряжения e-5 c.
В ABAQUS моделировался удар частицы о твердую поверхность, в STAR-CCM+ – взаимодействие частицы с жидкостью. В качестве материала использовалось стекло:
кг/м , ГПа, .