Механика сплошных сред — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Строка 1: Строка 1:
[[ТМ|Кафедра ТМ]] > [[Научный справочник]] > [[Механика]] > [[Механика сплошных сред]]<HR>
+
[[ТМ|Кафедра ТМ]] > [[Научный справочник]] > [[Механика]] > [[Механика сплошных сред | МСС]]<HR>
  
 
Механика сплошных сред (МСС) - раздел [[механика|механики]], посвященный изучению движения материальных сред, для которых возможно пренебрегать дискретностью их внутренней структуры. В основе МСС лежит  гипотеза [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%82%D0%B8%D0%BD%D1%83%D1%83%D0%BC_%28%D0%B2_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B5%29 континуальности], согласно которой распределение всех характеристик среды считается непрерывным в пространстве. В МСС математической моделью среды выступает гладкое дифференцируемое многообразие, а соответствующий математический объект – дифференциальные уравнения в частных производных. Как правило, среды, рассматриваемые в МСС - это газ, жидкость и  твердое деформируемое тело, однако методы МСС могут применяться и к таким дискретным средам, как наноструктуры и наноструктурированные материалы, сыпучие и гранулированные среды, пылевые облака и скопления космических тел. Однако применение МСС к дискретным средам сопровождается серьезными трудностями, для решения которых используется раздел [[механика|механики]], называемый [[механика дискретных сред|механикой дискретных сред]].
 
Механика сплошных сред (МСС) - раздел [[механика|механики]], посвященный изучению движения материальных сред, для которых возможно пренебрегать дискретностью их внутренней структуры. В основе МСС лежит  гипотеза [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%82%D0%B8%D0%BD%D1%83%D1%83%D0%BC_%28%D0%B2_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B5%29 континуальности], согласно которой распределение всех характеристик среды считается непрерывным в пространстве. В МСС математической моделью среды выступает гладкое дифференцируемое многообразие, а соответствующий математический объект – дифференциальные уравнения в частных производных. Как правило, среды, рассматриваемые в МСС - это газ, жидкость и  твердое деформируемое тело, однако методы МСС могут применяться и к таким дискретным средам, как наноструктуры и наноструктурированные материалы, сыпучие и гранулированные среды, пылевые облака и скопления космических тел. Однако применение МСС к дискретным средам сопровождается серьезными трудностями, для решения которых используется раздел [[механика|механики]], называемый [[механика дискретных сред|механикой дискретных сред]].

Версия 12:58, 26 марта 2014

Кафедра ТМ > Научный справочник > Механика > МСС

Механика сплошных сред (МСС) - раздел механики, посвященный изучению движения материальных сред, для которых возможно пренебрегать дискретностью их внутренней структуры. В основе МСС лежит гипотеза континуальности, согласно которой распределение всех характеристик среды считается непрерывным в пространстве. В МСС математической моделью среды выступает гладкое дифференцируемое многообразие, а соответствующий математический объект – дифференциальные уравнения в частных производных. Как правило, среды, рассматриваемые в МСС - это газ, жидкость и твердое деформируемое тело, однако методы МСС могут применяться и к таким дискретным средам, как наноструктуры и наноструктурированные материалы, сыпучие и гранулированные среды, пылевые облака и скопления космических тел. Однако применение МСС к дискретным средам сопровождается серьезными трудностями, для решения которых используется раздел механики, называемый механикой дискретных сред.

Внешние ссылки