Mikhail Babenkov — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(Новая страница: «Кафедра "Теоретическая механика" > [[Аспиранты кафедры "Теоретическая механика"|Аспирант...») |
|||
Строка 1: | Строка 1: | ||
− | [[Кафедра "Теоретическая механика"]] > [[Аспиранты кафедры "Теоретическая механика"|Аспиранты]] > М.Б. Бабенков <HR> | + | [[Кафедра "Теоретическая механика"]] > [[Аспиранты кафедры "Теоретическая механика"|Аспиранты]] > М.Б. Бабенков ([[Михаил_Бабенков|In Russian]]) <HR> |
− | [[Файл: P1070538.jpg|250px|thumb|right | + | [[Файл: P1070538.jpg|250px|thumb|right]] |
== Education == | == Education == |
Версия 07:08, 28 января 2014
Кафедра "Теоретическая механика" > Аспиранты > М.Б. Бабенков (In Russian)Содержание
Education
- Ph.D., SPbSPU, Institute of Applied Mathematics and Mechanics, 2013
- M.Sc., Mechanics and Process Control department, SPbSPU, 2010
- B.Sc., Mechanics and Process Control department,SPbSPU, 2008
- Lyceum №632, SPbSPU, 2002-2004
Additional edducation programs
- International Centre for Mechanical Sciences (CISM), Udine, Italy.
"Generalized Continua from the Theory to Engineering Applications"
Scientific interests
- Biomechanics
- Classical and hyperbolical thermoelasticity
- Nonlinear waves
- Applications of finite difference method
Educational projects
We assembled Scott's [1] model that demonstrates еру non-linear wave behaviour in solution of sin-Gordon equation.
Scott's model in motion:
I'm deeply gratefull to Andrey Golubchikov, Photomechanics™ for professional video and photographs and to Andrey Murachev for his assistance.
Articles
- M.B. Babenkov, E.A. Ivanova, Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type, Continuum Mechanics and Thermodynamics, 2013, DOI: 10.1007/s00161-013-0315-8
- M.B. Babenkov, Propagation of harmonic perturbations in a thermoelastic medium with heat relaxation, Journal of Applied Mechanics and Technical Physics, 2013, V.5, N.2, P.277-286
- M.B. Babenkov, Analysis of dispersion relations of a coupled thermoelasticity problem with regard to heat flux relaxation, Journal of Applied Mechanics and Technical Physics, 2011, V.52, N.6, P.941-949
Conferences
- M.B. Babenkov, Analysis of wave propagation in Thermoelastic medium with heat flux relaxation // Proceedings of 2nd International Conference on Mechanics of Materials Conference. Paris, France. 2011. P.107;
- M.B. Babenkov, Dispersion relations in the coupled problem of thermoelasticity // Proceedings of XXXVIII Summer School “Advanced Problems in Mechanics” St. Petersburg, Russia. 2010. P.26;
- A.I. Borovkov, D.S. Mikhalyuk, M.B. Babenkov, Finite-element modelling of contact stress in human knee with regard to angle of pathologic deformation // Proceedings of XIV National Conference “Fundamental studies and innovations in national research universities” St. Petersburg, Russia. 2010. V.1 P.50-51;
- Annual International Conference “Days on Diffraction” 2012: “Analysis of the plane wave propagation in a thermoelastic half space with regard to a heat flux relaxation constant”;
- VI International Scientific Conference on Mechanics “Polyakhov’s reading” 2012: “The dynamic coupled thermoelasticity problem with heat flux relaxation for half-space”;
- Seminar on Acoustics of East-European Acoustical Association 2011: “Propagation of harmonic waves in thermoelastic continuum with heat flux relaxation”;
- Seminar on Acoustics of East-European Acoustical Association 2010: “Comparative analysis of various equations of coupled thermoelasticity problem”;
- Seminar on Acoustics of East-European Acoustical Association 2009: “The dispersion relations in the coupled thermoelasticity”;
Software knowledge
- ANSYS;
- modeling of a contact problem in the human knee
- Simple Ware, Official page
- modeling of human bones, soft tissues and joints
- layered knee surfaces
- Wolfram Mathematica;
- analytical investigation of the dynamic problem of coupled thermoelasticity
Contact information
Babenkov Mikhail Borisovich
References
- ↑ Scott, A.C.: A Nonlinear Klein-Gordon Equation, American Journal of Physics 37(1), 52-61 (1969)