Mie–Gruneisen equation of state — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Новая страница: «== Основной источник == Материал данной статьи более подробно и полно изложен в публикации '...»)
 
Строка 1: Строка 1:
== Основной источник ==
+
== Source ==
Материал данной статьи более подробно и полно изложен в публикации '''Кривцов А. М., Кузькин В. А. [[Медиа: Krivtsov_2011_MTT.pdf | Получение уравнения состояния идеальных кристаллов простой структуры]] // Механика твёрдого тела. — 2011. — № 3.''' (English translation: A.M. Krivtsov, V.A. Kuzkin, [[Медиа: Krivtsov_2011_MechSol.pdf | Derivation of Equations of State for Ideal Crystals of Simple Structure]] // Mech. Solids. 46 (3), 387-399 (2011))
+
This article is based on the paper '''A.M. Krivtsov, V.A. Kuzkin, [[Медиа: Krivtsov_2011_MechSol.pdf | Derivation of Equations of State for Ideal Crystals of Simple Structure]] // Mech. Solids. 46 (3), 387-399 (2011))'''
  
== Уравнение состояния Ми-Грюнайзена ==
+
== Mie-Gruneisen equation of state ==
При больших давлениях и температурах принято представлять давление <math>p</math> в конденсированном веществе в виде суммы "холоднойи "тепловой" компонент:
+
In high pressure physics it is usual to represent the total pressure  <math>p</math> in condensed matter as a sum of "cold" and "thermal"   components:
  
 
<math>p = p_0 + p_T, ~~~~ p_T = p - p_0</math>
 
<math>p = p_0 + p_T, ~~~~ p_T = p - p_0</math>
  
Холодная компонента, часто называемая "холодной кривой" (cold curve), обусловлена деформированием кристаллической решетки, а вторая - тепловыми колебаниями атомов. Иными словами, холодное давление зависит только от объема, а тепловое - от объема и тепловой энергии <math> E_T </math>:
+
The cold pressure, refereed to as the "cold curve" is caused by deformation of crystal lattice only. The thermal pressure is due to thermal motion of the atoms. In other words, the cold pressure is a function of volume only, while the thermal pressure also depends on thermal energy <math> E_T </math>:
  
 
<math>p = p_0(V) + p_T(V,E_T)</math>
 
<math>p = p_0(V) + p_T(V,E_T)</math>
  
Тепловая энергия - часть внутренней энергии твердого тела, обусловленная тепловым движением атомов. В первом приближении тепловая энергия равна <math> c_V T </math>. На практике часто предполагается линейная связь теплового давления и тепловой энергии:  
+
The thermal energy is a part of the internal energy caused by the thermal motion of atoms. В первом приближении тепловая энергия равна <math> c_V T </math>. На практике часто предполагается линейная связь теплового давления и тепловой энергии:  
  
 
<math> p = p_0(V) + \frac{\varGamma(V)}{V} E_T</math>
 
<math> p = p_0(V) + \frac{\varGamma(V)}{V} E_T</math>

Версия 01:48, 11 декабря 2013

Source

This article is based on the paper A.M. Krivtsov, V.A. Kuzkin, Derivation of Equations of State for Ideal Crystals of Simple Structure // Mech. Solids. 46 (3), 387-399 (2011))

Mie-Gruneisen equation of state

In high pressure physics it is usual to represent the total pressure [math]p[/math] in condensed matter as a sum of "cold" and "thermal" components:

[math]p = p_0 + p_T, ~~~~ p_T = p - p_0[/math]

The cold pressure, refereed to as the "cold curve" is caused by deformation of crystal lattice only. The thermal pressure is due to thermal motion of the atoms. In other words, the cold pressure is a function of volume only, while the thermal pressure also depends on thermal energy [math] E_T [/math]:

[math]p = p_0(V) + p_T(V,E_T)[/math]

The thermal energy is a part of the internal energy caused by the thermal motion of atoms. В первом приближении тепловая энергия равна [math] c_V T [/math]. На практике часто предполагается линейная связь теплового давления и тепловой энергии:

[math] p = p_0(V) + \frac{\varGamma(V)}{V} E_T[/math]

Данное уравнение называют уравнением состояния Ми-Грюнайзена, а функцию [math]\varGamma(V)[/math] - функцией Грюнайзена. Значение [math] \varGamma_0 [/math]функции Грюнайзена в недеформированном состоянии тела называют коэффициентом Грюнайзена.

[math] \varGamma_0 = \varGamma(V_0)[/math]

Уравнение состояния для кристаллов простой структуры

[math] p_0 = \frac{1}{2V_0d\theta^d}\sum_{k=1}^n N_k\varPhi_k A_k^2,~~~~\varGamma = -\frac{\sum_{k=1}^n N_k((d+2)\varPhi'_k A_k^2 + 2\varPhi''_k A_k^4 )}{d\sum_{k=1}^n N_k (d\varPhi_k +2\varPhi'_k A_k^2)} [/math]

где [math]k[/math] - номер координационной сферы, [math]n[/math] - их число, [math]N_k[/math] - число атомов на [math]k[/math]-ой координационной сфере, [math] A_k = \rho_k R \theta[/math] - радиус координационной сферы, [math] \rho_k=A_k/A_1 [/math] - безразмерные константы решетки, [math]R[/math] - радиус первой координационной сферы в отсчетном положении, [math]\varPhi^{(n)}_k = \varPhi^{(n)}(A_k^2)[/math].


Холодная кривая для потенциалов Леннарда-Джонса, Ми, Морзе

  • Потенциал Леннарда-Джонса:

[math] \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6}) [/math]


  • Потенциал Ми

[math] \varPi(r) =\frac{D}{n-m} \left[m\left(\frac{a}{r}\right)^{n}-n\left(\frac{a}{r}\right)^{m} \right], ~~~~ p_0 =\frac{m n MD}{2d(n-m)V_0\theta^{d}}\left(\theta^{-n}-\theta^{-m}\right) [/math]

  • Потенциал Морзе

[math] \varPi(r) = D\left[e^{2\alpha(a-r)}-2e^{\alpha(a-r)}\right], ~~~~ p_0 = \frac{\alpha a MD}{d V_0\theta^{d-1}} \left[e^{2\alpha a(1-\theta)}-e^{\alpha a(1-\theta)}\right] [/math]

Здесь [math]D[/math] - энергия связи, [math]a[/math] - длина связи, [math]\alpha[/math] - параметр, характеризующий ширину потенциальной ямы; [math]m, n[/math] - параметры потенциала Ми.

Коэффициент Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе

Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности [math]d[/math] имеет вид:

[math] \varGamma_0 = -\frac{1}{2d}\frac{\varPi'''(a)a^2 + (d-1)\left[\varPi''(a)a - \varPi'(a)\right]}{\varPi''(a)a + (d-1)\varPi'(a)} [/math]

где [math]\Pi[/math] - потенциал межатомного взаимодействия, [math]a[/math] - равновесное расстояние, [math]d[/math] - размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннарда-Джонса, Ми и Морзе представлена в таблице.

решетка размерность пространства Потенциал Леннарда-Джонса Потенциал Ми Потенциал Морзе
Цепочка [math] d=1 [/math] [math]10\frac{1}{2} [/math] [math]\frac{m+n+3}{2}[/math] [math]\frac{3\alpha a}{2}[/math]
Треугольная решетка [math]d=2 [/math] [math]5[/math] [math] \frac{m+n+2}{4}[/math] [math] \frac{3\alpha a - 1}{4}[/math]
ГЦК, ОЦК [math]d=3 [/math] [math]\frac{19}{6} [/math] [math]\frac{n+m+1}{6}[/math] [math]\frac{3\alpha a-2}{6}[/math]
"Гиперрешетка" [math]d=\infty[/math] [math]-\frac{1}{2}[/math] [math]-\frac{1}{2}[/math] [math]-\frac{1}{2}[/math]
Общая формула [math]d[/math] [math]\frac{11}{d}-\frac{1}{2}[/math] [math]\frac{m+n+4}{2d}-\frac{1}{2}[/math] [math]\frac{3\alpha a + 1}{2d}-\frac{1}{2}[/math]

Функция Грюнайзена для потенциалов Леннарда-Джонса, Ми, Морзе

  • Потенциал Леннарда-Джонса:

[math] \varGamma = \frac{1}{d}\frac{4(8-d)\theta^{6}-7(14-d)}{(8-d)\theta^{6}-(14-d)}. [/math]


  • Потенциал Ми

[math] \varGamma = \frac{1}{2d}\frac{(n+2)(n-d+2)\theta^{m-n}-(m+2)(m-d+2)}{(n-d+2)\theta^{m-n}-(m-d+2)}. [/math]


  • Потенциал Морзе

[math] \varGamma = \frac{1}{2d}\frac{e^{\alpha a(1-\theta)}\left(4\alpha^2a^2\theta^2-2d_1\alpha a \theta-d_1\right)-\left(\alpha^2 a^2\theta^2-d_1\alpha a\theta-d_1 \right)}{e^{\alpha a(1-\theta)}(2\alpha a\theta-d_1) -(\alpha a\theta-d_1)},~~ [/math] [math]d_1 = d-1,~~[/math] [math]\theta=(V/V_0)^{1/d}[/math]



Статьи

  • Кривцов А. М., Кузькин В. А. Получение уравнения состояния идеальных кристаллов простой структуры // Механика твёрдого тела. — 2011. — № 3.

Ссылки