Краморов Данил. Курсовой проект по теоретической механике — различия между версиями
Данил (обсуждение | вклад) (→Решение) |
Данил (обсуждение | вклад) (→Решение) |
||
Строка 25: | Строка 25: | ||
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет представлять из себя параболу. ([http://ru.wikipedia.org/wiki/%CD%EE%F0%EC%E0%EB%FC%ED%EE%E5_%F0%E0%F1%EF%F0%E5%E4%E5%EB%E5%ED%E8%E5 распределение Гаусса]). Получаем зависимость от местоположения в потоке.<br> | Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет представлять из себя параболу. ([http://ru.wikipedia.org/wiki/%CD%EE%F0%EC%E0%EB%FC%ED%EE%E5_%F0%E0%F1%EF%F0%E5%E4%E5%EB%E5%ED%E8%E5 распределение Гаусса]). Получаем зависимость от местоположения в потоке.<br> | ||
− | <math> \upsilon(x)= \sqrt {\frac{g} {m}} ({\frac {d}{2}-x})^2 + \ | + | <math> \upsilon(x)= \sqrt {\frac{g} {m}} ({\frac {d}{2}-x})^2 + \upsilon_{max}</math><br> |
<math> \upsilon(x)= \frac{6} {d \sqrt{2\pi}} e^{-\frac{9(2x- d)^2} {d^2}}</math><br> | <math> \upsilon(x)= \frac{6} {d \sqrt{2\pi}} e^{-\frac{9(2x- d)^2} {d^2}}</math><br> | ||
Версия 21:38, 31 мая 2012
Содержание
Тема проекта
Колебания шарика в вертикальном воздушном потоке
Постановка задачи
Тело - в данном эксперименте шарик для настольного тенниса - помещается на край вертикального воздушного потока (создается феном). Подчиняясь закону Бернулли, шарик будет пытаться стабилизироваться в центре потока, совершая колебания. Требуется найти уравнение колебаний шарика. Рассматриваются только горизонтальные колебания внутри потока.
Параметры системы:
кг/м^3 (массовая плотность воздуха)
м^2 (площадь поперечного сечения шара)
(коэффициент подъемной силы)
м/с (максимальная скорость потока, расчет приведен)
Решение
Рассмотрим горизонтальную составляющую второго закона Ньютона для данного тела. В этом направление на шарик действуют подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.
Шарик не является точечным делом, поэтому на границы шарика действуют два разных по значению подъемные силы. Они будут противоположны по знаку. Следовательно уравнение движения будет иметь вид:
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет представлять из себя параболу. (распределение Гаусса). Получаем зависимость от местоположения в потоке.
Для плотности распределения максимальным значением будет 1. Для скорости же оно будет иным. В связи с этим следует найти коэффициент, на который нужно домножить функцию, чтобы получить точное значение.
Расчет коэффициента
Для начала следует найти скорость потока в центре (максимальную скорость).
Теперь находим коэффициент z.
Итог
Общая формула будет иметь вид:
Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.
Обсуждение результатов и выводы
Аналитический расчет подтвердил экспериментальную оценку. Окончательное уравнение показало, что тело в вертикальном воздушном потоке совершает затухающие колебания. Также можно отметить, что колебания оказались очень малы. Шарик практически моментально стабилизируется в потоке. Что касается вертикальных колебаний, то они зависят от перепадов напряжения в сети и носят довольно случайный характер. Посредством пакета matlab были построены графики скорости, ускорения и движения тела в потоке.