Дзенушко Дайнис. Курсовой проект по теоретической механике — различия между версиями
Dainis (обсуждение | вклад) (→Решение) |
Dainis (обсуждение | вклад) (→Решение) |
||
Строка 35: | Строка 35: | ||
<math>\underline{\omega}_2 = ?</math><br> | <math>\underline{\omega}_2 = ?</math><br> | ||
Для нахождения <math>\underline{\omega}_2</math> найдем тензоры поворота первого и второго стержней<br> | Для нахождения <math>\underline{\omega}_2</math> найдем тензоры поворота первого и второго стержней<br> | ||
− | <math>\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)</math> | + | <math>\underline{\underline{P}}_1(\varphi,\underline{k}) = \underline{k}\underline{k} + (\underline{\underline{E}} - \underline{k}\underline{k})cos(\varphi) + \underline{k} \times \underline{\underline{E}}sin(\varphi)</math><br> |
== Обсуждение результатов и выводы == | == Обсуждение результатов и выводы == |
Версия 11:41, 25 мая 2012
Содержание
Тема проекта
Описание колебаний двойного маятника
Постановка задачи
Стержень прикреплен к потолку посредством циллиндрического шарнира. Cнизу к этому стержню прикреплен второй также посредством циллиндрического шарнира таким образом что когда маятник вытянут вдоль вертикали, обе оси вращения шарниров расположены в горизонтальной плоскости а угол между ними составляет
Параметры системы:
- Тензоры инерции первого и второго стержней равны и соответственно.
- Длины стержней равны a и b, их массы и соответственно первому и второму стержням.
- Угол между осями вращения шарниров равен
- - угол между первым стержнем и вертикалью
- - угол между осью первого стержня и вторым стержнем т.е. угол во втором шарнире относительно вытянутого положения
Задача:
- Найти уравнение движения системы
Решение
Определимся с подходом к решению: Задачу будем решать при помощи уравнения Лагранжа имеющего следующий вид:
Выберем обобщенные координаты: в качестве обобщенных координат возьмем углы и
- В нашем случае отсутствуют обощенные силы, соответствующие непотенциальным взаимодействиям.
Найдем потенциальную и кинетическую энергии системы:
- Потенциальная энергия системы
- Кинетическая энергия системы
- Кинетическая энергия первого стержня
- Потенциальная энергия первого стержня
- Кинетическая энергия второго стержня
Для нахождения найдем тензоры поворота первого и второго стержней