Моделирование удара шара об стенку — различия между версиями
Shtamm.ma (обсуждение | вклад) |
Shtamm.ma (обсуждение | вклад) (→Математическая модель) |
||
Строка 15: | Строка 15: | ||
<math> | <math> | ||
− | m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2 | + | m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{P}+\underline{F}_{Wall}\\ |
\underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n | \underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n | ||
</math> | </math> | ||
Строка 41: | Строка 41: | ||
<math> | <math> | ||
− | \underline{P}=k(\frac{V}{V_{0}} | + | \underline{P}=k(1-\frac{V}{V_{0}}) \underline{n} |
</math>, где <math> V </math> - актуальный объем шара, <math> V_{0} </math> - начальный объем шара, <math> k </math> - коэффициент давления, <math> \underline{n}</math> - нормаль к пружине, направленная наружу. | </math>, где <math> V </math> - актуальный объем шара, <math> V_{0} </math> - начальный объем шара, <math> k </math> - коэффициент давления, <math> \underline{n}</math> - нормаль к пружине, направленная наружу. | ||
Версия 09:18, 20 января 2022
Курсовой проект по Механике дискретных сред
Исполнитель: Штамм Максим
Группа: 5030103/80101
Семестр: осень 2021
Постановка задачи
Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.
Математическая модель
Уравнение движения для каждой из материальных точек записывается следующим образом:
где
- силы упругости действующие на -ую частицу со стороны и соответственно;- давление создаваемое газом;
- сила взаимодействия между воздушным шаром и стеной;
Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:
, где - коэффициент жесткости пружины.
Давление:
, где - актуальный объем шара, - начальный объем шара, - коэффициент давления, - нормаль к пружине, направленная наружу.
Взаимодействие шара со стеной:
, где
Интегрирование уравнений движения осуществляется при помощи метода Верле.
Реализация модели
Визуализацию и исходный код: Реализация