Моделирование удара шарика об стенку — различия между версиями
Shtamm.ma (обсуждение | вклад) (→Математическая модель) |
Shtamm.ma (обсуждение | вклад) (→Математическая модель) |
||
Строка 24: | Строка 24: | ||
\underline{F}_{R_1}, \underline{F}_{R_2}\\ | \underline{F}_{R_1}, \underline{F}_{R_2}\\ | ||
</math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | </math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | ||
− | |||
− | |||
− | |||
− | |||
<math> | <math> | ||
Строка 42: | Строка 38: | ||
\underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R | \underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R | ||
</math>, где <math>k_R</math> - коэффициент жесткости пружины. | </math>, где <math>k_R</math> - коэффициент жесткости пружины. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Давление: | Давление: | ||
<math> | <math> | ||
− | \underline{P}=(\frac{V}{V_{0}} - 1) | + | \underline{P}=k(\frac{V}{V_{0}} - 1) \underline{n} |
− | </math>, где <math> V </math> - актуальный объем шара, <math> | + | </math>, где <math> V </math> - актуальный объем шара, <math> V_{0} </math> - начальный объем шара, <math> k </math> - коэффициент давления, <math> \underline{n}</math> - нормаль к пружине, направленная наружу. |
Взаимодействие шара со стеной: | Взаимодействие шара со стеной: |
Версия 21:50, 19 января 2022
Курсовой проект по Механике дискретных сред
Исполнитель: Пашковский Дмитрий
Группа: 5030103/80101
Семестр: осень 2021
Постановка задачи
Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.
Математическая модель
Уравнение движения для каждой из материальных точек записывается следующим образом:
где
- силы упругости действующие на -ую частицу со стороны и соответственно;
- давление создаваемое газом;
- сила взаимодействия между воздушным шаром и стеной;
Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:
, где - коэффициент жесткости пружины.
Давление:
, где - актуальный объем шара, - начальный объем шара, - коэффициент давления, - нормаль к пружине, направленная наружу.
Взаимодействие шара со стеной:
, где
Интегрирование уравнений движения осуществляется при помощи метода Верле.
Результаты моделирования
Результаты моделирования и исходный код можно посмотреть на GitHub: https://github.com/DmitryPashkovsky/balloon_modeling_2D