"Одномерная линейная цепочка" — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Строка 8: Строка 8:
  
 
==Постановка задачи==
 
==Постановка задачи==
Сравнить различные методы интегрирования уравнений движения одномерной линейной цепочки (Верле, Рунге-Кутта).
+
1) Сравнить различные методы интегрирования уравнений движения одномерной линейной цепочки (Верле, Рунге-Кутта).
 +
Реализовать фиксированные, свободные и периодические граничные условия.
  
Реализовать фиксированные, свободные и периодические граничные условия.
+
2) Рассмотреть движение частицы в потенциальной яме Леннарда-Джонса: численно определить скорость диссоциации.
  
==Решение==
+
==Первая задача: решение==
 
Уравнение движения:  
 
Уравнение движения:  
  
Строка 18: Строка 19:
 
<math> \dot{x} = v </math><br>
 
<math> \dot{x} = v </math><br>
  
===Метод Верле===
+
===Первая задача: метод Верле===
 
<math> v_{i+1} = v_i + w^2 (x_{i+1} - 2x_{i} + x_{i-1})\Delta t </math><br>
 
<math> v_{i+1} = v_i + w^2 (x_{i+1} - 2x_{i} + x_{i-1})\Delta t </math><br>
 
<math> x_{i+1} = x_i + v_{i+1}\Delta t </math><br>
 
<math> x_{i+1} = x_i + v_{i+1}\Delta t </math><br>
  
  
===Метод Рунге-Кутта 4 порядка===
+
===Первая задача: метод Рунге-Кутта 4 порядка===
 
<math> v_{i+1} = v_i + \frac {g_1 + 2g_2+2g_3+g_4}{6}</math><br>
 
<math> v_{i+1} = v_i + \frac {g_1 + 2g_2+2g_3+g_4}{6}</math><br>
 
<math> x_{i+1} = x_i + \frac {k_1 + 2k_2+2k_3+k_4}{6}</math><br>
 
<math> x_{i+1} = x_i + \frac {k_1 + 2k_2+2k_3+k_4}{6}</math><br>
Строка 30: Строка 31:
  
 
<math> v_{i+1} = v_i + \frac {g_1 + 2g_2+2g_3+g_4}{6}</math><br>
 
<math> v_{i+1} = v_i + \frac {g_1 + 2g_2+2g_3+g_4}{6}</math><br>
 +
 +
==Вторая задача: решение==
 +
Уравнение движения частицы в потенциальной яме Леннарда-Джонса:
 +
 +
<math> v_{i+1} = v_i + \Delta t + F_{r}(x_i) </math><br>
 +
<math> x_{i+1} = x_i + v_i * \Delta t </math><br>
 +
 +
Где
 +
 +
<math> F_{r}(x_i) = \frac{12*D*(-(\frac{a}{x})^(13) + (\frac{a}{x})^(7))}{a};</math><br>

Версия 22:15, 21 января 2020

Курсовой проект по Механике дискретных сред

Исполнитель: Кравченко Ирина

Группа: 3630103/60101

Семестр: осень 2019

Постановка задачи

1) Сравнить различные методы интегрирования уравнений движения одномерной линейной цепочки (Верле, Рунге-Кутта). Реализовать фиксированные, свободные и периодические граничные условия.

2) Рассмотреть движение частицы в потенциальной яме Леннарда-Джонса: численно определить скорость диссоциации.

Первая задача: решение

Уравнение движения:

[math] \dot{v} = w^2 (x_{i+1} - 2x_{i} + x_{i-1}) [/math]
[math] \dot{x} = v [/math]

Первая задача: метод Верле

[math] v_{i+1} = v_i + w^2 (x_{i+1} - 2x_{i} + x_{i-1})\Delta t [/math]
[math] x_{i+1} = x_i + v_{i+1}\Delta t [/math]


Первая задача: метод Рунге-Кутта 4 порядка

[math] v_{i+1} = v_i + \frac {g_1 + 2g_2+2g_3+g_4}{6}[/math]
[math] x_{i+1} = x_i + \frac {k_1 + 2k_2+2k_3+k_4}{6}[/math]

Где

[math] v_{i+1} = v_i + \frac {g_1 + 2g_2+2g_3+g_4}{6}[/math]

Вторая задача: решение

Уравнение движения частицы в потенциальной яме Леннарда-Джонса:

[math] v_{i+1} = v_i + \Delta t + F_{r}(x_i) [/math]
[math] x_{i+1} = x_i + v_i * \Delta t [/math]

Где

[math] F_{r}(x_i) = \frac{12*D*(-(\frac{a}{x})^(13) + (\frac{a}{x})^(7))}{a};[/math]