Перераспределение энергии между поступательными и вращательными степенями свободы — различия между версиями
Anpolol (обсуждение | вклад) (→Визуализация) |
Anpolol (обсуждение | вклад) (→Визуализация) |
||
Строка 159: | Строка 159: | ||
В данном случае перераспределение энергий выглядит следующим образом: | В данном случае перераспределение энергий выглядит следующим образом: | ||
− | [[File:МДСПОСТУП | + | [[File:МДСПОСТУП НОЛЬ2.png|center]] |
Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна <math> \overline{T_p} = 0.102359 </math>, а вращательного - <math> \overline{T_t} =0.315561 </math> | Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна <math> \overline{T_p} = 0.102359 </math>, а вращательного - <math> \overline{T_t} =0.315561 </math> | ||
Строка 167: | Строка 167: | ||
В данном случае перераспределение энергий выглядит следующим образом: | В данном случае перераспределение энергий выглядит следующим образом: | ||
− | [[File:МДСВРАЩ | + | [[File:МДСВРАЩ НОЛЬ2.png|center]] |
Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна <math> \overline{T_p} = 2.18867 </math>, а вращательного - <math> \overline{T_t} =0.787559 </math> | Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна <math> \overline{T_p} = 2.18867 </math>, а вращательного - <math> \overline{T_t} =0.787559 </math> | ||
Строка 175: | Строка 175: | ||
В данном случае перераспределение энергий выглядит следующим образом: | В данном случае перераспределение энергий выглядит следующим образом: | ||
− | [[File: | + | [[File:МДСРАНДОМ2.png|center]] |
Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна <math> \overline{T_p} = 2.05775 </math>, а вращательного - <math> \overline{T_t} = 1.01699 </math> | Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна <math> \overline{T_p} = 2.05775 </math>, а вращательного - <math> \overline{T_t} = 1.01699 </math> |
Версия 11:11, 16 января 2019
Содержание
Постановка задачи
Рассмотреть перераспределение энергии между вращательными и поступательными степенями свободы в системе из N тел-точек, соединенных друг с другом балками Бернулли-Эйлера.
Вывод уравнений
Рассматривается система из N тел-точек. Каждое
-ое тело имеет две степени свободы - смещение вдоль вертикальной оси , и угол поворота относительно вертикальной оси . Все тела соединены стержнями, которые описываются уравнением балки Бернулли - Эйлера. Движение каждого тела - точки описывается уравнениями:
где момент инерции тела-точки.
Моменты и силы находим по определению:
где
модуль юнга материала балки, момент инерции сечения балки. Вид функции y(x) найдем из уравнения Балки - Бернулли Эйлера:
получаем:
Для поиска коэффициентов необходимы граничные условия. Для
ого тела рассмотрим два участка: балка, соединяющая и тела:
и на участке, соединяющим
и тела-точки:
где
длина балки.Учитывая граничные условия и все вышеприведенные формулы, находим уравнения движения
Обезразмеривание уравнений движения
Перепишем уравнения, полученные в предыдущем пункте, в виде:
гд
положим равными единицам.
Получили обезразмеренные уравнения:
Обезразмеривание энергии
Кинетическая энергия данной системы состоит из суммы кинетической энергии поступательного и вращательного движений:
Для обезразмеривания перепишем вышеприведенное выражение в виде:
Получаем обезразмеренную энергию:
Осталось вычислить коэффициент перед обезразмеренной кинетической энергией вращательного движения:
Для этого воспользуемся видом частот
и , полученные в предыдущем пункте и получим, чтоОкончательно, обезраземеренная кинетическая энергия системы примет вид:
Обозначим обезразмеренную кинетическую энергию вращательного движения
а обезразмеренную кинетическую энергию поступательного движения
Визуализация
Рассмотрим для системы из 50 частиц и времени
три случая:1. В начальный момент времени энергия поступательного движения
, а энергия вращательного движения задается случайным образомВ данном случае перераспределение энергий выглядит следующим образом:
Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна
, а вращательного -2. В начальный момент времени энергия вращательного движения
, а энергия поступательного движения задается случайным образомВ данном случае перераспределение энергий выглядит следующим образом:
Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна
, а вращательного -3. В начальный момент времени и энергия вращательного движения и энергия поступательного движения задаются случайным образом
,В данном случае перераспределение энергий выглядит следующим образом:
Средняя по всему времени реализации энергия кинетической энергии поступательного движения равна
, а вращательного -