Определение упругих модулей материала — различия между версиями
(→Компьютерный эксперимент с конкретным материалом) |
(→Компьютерный эксперимент с конкретным материалом) |
||
Строка 77: | Строка 77: | ||
== Компьютерный эксперимент с конкретным материалом == | == Компьютерный эксперимент с конкретным материалом == | ||
+ | |||
При компьютерном эксперименте был рассмотрен изотропный материал со следующими параметрами: | При компьютерном эксперименте был рассмотрен изотропный материал со следующими параметрами: | ||
Строка 84: | Строка 85: | ||
Радиус обрезания - <math> A_c = 1.3</math> | Радиус обрезания - <math> A_c = 1.3</math> | ||
+ | |||
+ | Масса частиц, жесткость частиц и длина ребра материала приняты равными единице. | ||
При растяжении такого материала упругие модули получаются следующими: | При растяжении такого материала упругие модули получаются следующими: |
Текущая версия на 14:10, 23 января 2018
Курсовой проект по Механике дискретных сред
Исполнитель: Фомичева Мария
Группа: 10 (43604/1)
Семестр: осень 2017
Содержание
Введение[править]
В настоящее время большое внимание уделяется исследованию упругих свойств разных материалов. Эти исследования позволяют определить поведение материала при различных деформациях и напряжениях.
В данной работе проводится исследование материала на его упругие характеристики - коэффициента Пуассона и модуля Юнга. Вычисление модулей ведется с помощью компьютерного эксперимента. Пример материала, для которого производились расчеты, показан на Рис.1. При вычислении упругих коэффициентов используется метод молекулярной динамики (ММД). Кроме того, в задаче ставятся фиксированные граничные условия: левая грань материала фиксируется, правая грань растягивается вдоль горизонтально оси, все остальные грани - свободные.
Алгоритм компьютерного эксперимента[править]
Весь компьютерный эксперимент можно условно разделить на три этапа.
На первом этапе находится положение равновесия материала в растянутом состоянии. При этом задается растяжение вдоль одной из осей симметрии материала (оси X). Компьютерный эксперимент производится посредством нахождения радиус векторов и векторов скорости частиц в зависимости от времени. Интегрирование ведется методом центральных разностей. Данный метод состоит в том, что координаты и силы вычисляются во временных точках, разделенных интервалами равными шагу интегрирования, а скорости вычисляются во временных точках, находящихся в серединах вышеупомянутых интервалов:
где
– шаг интегрирования. Ускорение вычисляется через приложенную к частице силу. Кроме того, на первом этапе вычисляется средняя деформация материала после его растяжения.Второй этап представляет собой определение слагаемых сил, действующих на один атом системы и на соседние с ним атомы. Зная силы, механические напряжения в решетке можно вычислить по формулам:
Здесь
– тензор механических напряжений для частицы с номером . При однородном поле деформации находится средний тензор напряжений по всем частицам. – объем ячейки периодичности. – вектор относительного положения соседней частицы: , где – радиус-вектор частицы с номером , – радиус-вектор соседней частицы ( ).
Третий этап представляет собой нахождение упругих модулей через коэффициенты упругости. Для нахождения коэффициентов упругости воспользуемся формулами их выражения через компоненты тензоров напряжения и деформации.
В трехмерном материале коэффициенты упругости определяются через следующие выражения:
Модули упругости выражаются формулами:
где - модуль Юнга, - коэффициент Пуассона
Компьютерный эксперимент с конкретным материалом[править]
При компьютерном эксперименте был рассмотрен изотропный материал со следующими параметрами:
Расстояние между частицами -
Количество частиц -
Радиус обрезания -
Масса частиц, жесткость частиц и длина ребра материала приняты равными единице.
При растяжении такого материала упругие модули получаются следующими:
где - обезразмеренный модуль Юнга
Ссылки[править]
- Автор проекта: Фомичева Мария
- Виртуальная лаборатория