Силовой резонанс для осциллятора с диссипацией — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Новая страница: ««Силовой резонанс для осциллятора с диссипацией» "Курсовой проект по информатике" ""Вып…»)
 
Строка 1: Строка 1:
«Силовой резонанс для осциллятора с диссипацией»
+
'''Силовой резонанс для осциллятора с диссипацией'''
  
"Курсовой проект по информатике"
+
Курсовой проект по информатике  
  
""Выполнила: [[Васильева Анастасия]]""
+
Исполнитель: [[Васильева Анастасия]]
  
""Группа:"" 13604/1
+
Группа 13604/1
 +
Кафедра Теоретической механики
 +
 
 +
Семестр: весна 2016
  
""Семестр:"" весна 2016
 
  
  
 
==Аннотация проекта==
 
==Аннотация проекта==
 +
 
Явление резонанса играет очень большую роль в динамике, его исследованию посвящено большое число работ. Здесь мы ограничимся разбором наиболее простой ситуации резонанса для одномерного гармонического осциллятора.
 
Явление резонанса играет очень большую роль в динамике, его исследованию посвящено большое число работ. Здесь мы ограничимся разбором наиболее простой ситуации резонанса для одномерного гармонического осциллятора.
 +
 +
 +
==Мотивировки и постановка задачи==
 +
 +
Одномерный гармонический осциллятор является модельной системой, на которой можно наблюдать основные явления, связанные с колебаниями. При этом, вообще говоря, колебательные явления могут иметь весьма различную природу: колебания параметров орбит планет, звуковые явления, осцилляции токов в электрических цепях, колебания численности популяций животных и т. д. Кроме того, известно, что во многих реальных ситуациях существенное влияние на динамику оказывает диссипация – утечка энергии из колебательного движения в другие ее формы. Поэтому целесообразно рассмотреть в качестве модельной системы осциллятор с диссипацией (сохраняя, разумеется, возможность задать ее малой или даже нулевой).
 +
 +
==Исследование задачи с помощью программы==
 +
Приступим к обсуждению характера динамики, возникающей в нашей системе в различных ситуациях.
 +
Сначала рассмотрим случай отсутствия трения: 𝛾=0. При этом возьмем собственную частоту осциллятора 𝜔0=1, а частоту внешней силы 𝜔=5, то есть зададим их далекими друг от друга.
 +
[[File:y=0,w0=1,w=5.png]]
 +
Видим, что динамика представляет собой суперпозицию двух колебаний: резкие зигзаги соответствуют колебанию с высокой частотой, а воображаемая более плавная кривая, на которую они "нанизаны" – колебанию с меньшей частотой.
 +
Зададим теперь значения частот, более близкие друг к другу: ω0=1,ω=1.2.
 +
[[File:y=0,w0=1,w=1,2.png]]
 +
Динамика приобретает характер колебания с медленно меняющейся амплитудой (также совершающей колебания). Такой процесс называют биениями.
 +
Рассмотрим теперь случай полного (точного) резонанса: ω0=ω=1.
 +
[[File:y=0,w0=w=1.png]]
 +
Происходит колебание с линейно растущей амплитудой. 
 +
Обратимся теперь к случаю ненулевого трения: 𝛾≠0. Сначала рассмотрим случай, когда ε>γ, например, ω0=1,ω=1.2,γ=0.03.
 +
[[File:y=0,03,w0=1,w=1,2.png]]
 +
Видно, что происходят колебания, амплитуда которых, в свою очередь, осциллирует, и ее осцилляции постепенно затухают. Процесс приближается к режиму обычных гармонических колебаний, которые в этом случае называются установившимися колебаниями. Изображенную динамику называют переходным процессом, или процессом установления колебаний.
 +
Теперь рассмотрим случай, когда трение "превалирует" над удалением от резонанса: ε « γ, например, ω0 =1,ω = 1.0001,γ=0.05. [[File:y=0,05,w0=1,w=1,0001.png]]
 +
Здесь мы имеем переходный процесс с плавно возрастающей амплитудой, которая стремится к некоторой константе – амплитуде установившихся колебаний.
 +
Таким образом, при наличии трения динамика содержит переходный процесс, на протяжении которого затухают вызванные внешней силой свободные колебания (на собственной частоте осциллятора), а также последующие установившиеся вынужденные колебания.
 +
 +
 +
==Заключение==
 +
 +
Явление силового резонанса является важнейшим проявлением действия внешних сил на колебательные системы. Через него устанавливается соотношение между частотой воздействующей на осциллятор силы и собственной частотой осциллятора: как мы видели, резонанс, то есть существенное возрастание амплитуды колебаний, происходит, когда эти частоты близки друг к другу. Иначе говоря, система сильно поглощает энергию тех воздействий, которые происходят на близких к ее собственным
 +
частотах, и пропускает другие воздействия. Это свойство имеет широчайшие проявления в природе и применения в технике.
 +
Так, оно лежит в основе радиотехники, акустических приборов и музыкальных инструментов, лазерной техники. Более экзотические примеры включают орбитальный резонанс, из-за которого, например, периоды орбит трех из четырех галилеевских спутников Юпитера – Ганимеда, Европы и Ио – относятся как 4:2:1 (так называемый резонанс Лапласа), а также приливный
 +
резонанс, приводящий к резкому усилению приливов в бухтах, где их период совпадает со временем прохождения бухты длинной волной. Кроме того, резонансные явления, хотя и несколько своеобразной, квантовой природы, лежат в основе многих методов изучения вещества. В этом случае внешние воздействия резонируют с параметрами систем атомного масштаба. Например, так устроены оптическая и инфракрасная спектроскопии газов, эффект Мёссбауэра, магнитный резонанс. Следует также отметить, что во многих ситуациях резонансы могут иметь нежелательные для человека последствия: разрушение мостов, башен, механических устройств. Все это делает изучение резонансных явлений одной из центральных областей внимания исследователей.
  
 
==Список литературы==
 
==Список литературы==
Строка 20: Строка 54:
 
5. «Объектно-ориентированное программирование в С++» Р. Лафоре  
 
5. «Объектно-ориентированное программирование в С++» Р. Лафоре  
  
==Скачать==
+
Общие сведения, а также саму программу можно скачать по ссылке:
 
[[:File:Проект1.zip]]
 
[[:File:Проект1.zip]]

Версия 12:45, 17 июня 2016

Силовой резонанс для осциллятора с диссипацией

Курсовой проект по информатике

Исполнитель: Васильева Анастасия

Группа 13604/1 Кафедра Теоретической механики

Семестр: весна 2016


Аннотация проекта

Явление резонанса играет очень большую роль в динамике, его исследованию посвящено большое число работ. Здесь мы ограничимся разбором наиболее простой ситуации резонанса для одномерного гармонического осциллятора.


Мотивировки и постановка задачи

Одномерный гармонический осциллятор является модельной системой, на которой можно наблюдать основные явления, связанные с колебаниями. При этом, вообще говоря, колебательные явления могут иметь весьма различную природу: колебания параметров орбит планет, звуковые явления, осцилляции токов в электрических цепях, колебания численности популяций животных и т. д. Кроме того, известно, что во многих реальных ситуациях существенное влияние на динамику оказывает диссипация – утечка энергии из колебательного движения в другие ее формы. Поэтому целесообразно рассмотреть в качестве модельной системы осциллятор с диссипацией (сохраняя, разумеется, возможность задать ее малой или даже нулевой).

Исследование задачи с помощью программы

Приступим к обсуждению характера динамики, возникающей в нашей системе в различных ситуациях. Сначала рассмотрим случай отсутствия трения: 𝛾=0. При этом возьмем собственную частоту осциллятора 𝜔0=1, а частоту внешней силы 𝜔=5, то есть зададим их далекими друг от друга. Y=0,w0=1,w=5.png Видим, что динамика представляет собой суперпозицию двух колебаний: резкие зигзаги соответствуют колебанию с высокой частотой, а воображаемая более плавная кривая, на которую они "нанизаны" – колебанию с меньшей частотой. Зададим теперь значения частот, более близкие друг к другу: ω0=1,ω=1.2. Y=0,w0=1,w=1,2.png Динамика приобретает характер колебания с медленно меняющейся амплитудой (также совершающей колебания). Такой процесс называют биениями. Рассмотрим теперь случай полного (точного) резонанса: ω0=ω=1. Y=0,w0=w=1.png Происходит колебание с линейно растущей амплитудой. Обратимся теперь к случаю ненулевого трения: 𝛾≠0. Сначала рассмотрим случай, когда ε>γ, например, ω0=1,ω=1.2,γ=0.03. Y=0,03,w0=1,w=1,2.png Видно, что происходят колебания, амплитуда которых, в свою очередь, осциллирует, и ее осцилляции постепенно затухают. Процесс приближается к режиму обычных гармонических колебаний, которые в этом случае называются установившимися колебаниями. Изображенную динамику называют переходным процессом, или процессом установления колебаний. Теперь рассмотрим случай, когда трение "превалирует" над удалением от резонанса: ε « γ, например, ω0 =1,ω = 1.0001,γ=0.05. Y=0,05,w0=1,w=1,0001.png Здесь мы имеем переходный процесс с плавно возрастающей амплитудой, которая стремится к некоторой константе – амплитуде установившихся колебаний. Таким образом, при наличии трения динамика содержит переходный процесс, на протяжении которого затухают вызванные внешней силой свободные колебания (на собственной частоте осциллятора), а также последующие установившиеся вынужденные колебания.


Заключение

Явление силового резонанса является важнейшим проявлением действия внешних сил на колебательные системы. Через него устанавливается соотношение между частотой воздействующей на осциллятор силы и собственной частотой осциллятора: как мы видели, резонанс, то есть существенное возрастание амплитуды колебаний, происходит, когда эти частоты близки друг к другу. Иначе говоря, система сильно поглощает энергию тех воздействий, которые происходят на близких к ее собственным частотах, и пропускает другие воздействия. Это свойство имеет широчайшие проявления в природе и применения в технике. Так, оно лежит в основе радиотехники, акустических приборов и музыкальных инструментов, лазерной техники. Более экзотические примеры включают орбитальный резонанс, из-за которого, например, периоды орбит трех из четырех галилеевских спутников Юпитера – Ганимеда, Европы и Ио – относятся как 4:2:1 (так называемый резонанс Лапласа), а также приливный резонанс, приводящий к резкому усилению приливов в бухтах, где их период совпадает со временем прохождения бухты длинной волной. Кроме того, резонансные явления, хотя и несколько своеобразной, квантовой природы, лежат в основе многих методов изучения вещества. В этом случае внешние воздействия резонируют с параметрами систем атомного масштаба. Например, так устроены оптическая и инфракрасная спектроскопии газов, эффект Мёссбауэра, магнитный резонанс. Следует также отметить, что во многих ситуациях резонансы могут иметь нежелательные для человека последствия: разрушение мостов, башен, механических устройств. Все это делает изучение резонансных явлений одной из центральных областей внимания исследователей.

Список литературы

1. http://www.cyberforum.ru/ 2. О. М. Огородникова Вычислительные методы в компьютерном инжиниринге 3. Т.И. ЧЕРНЫШОВА, В.А. ТЁТУШКИН МОДЕЛИРОВАНИЕ В РАДИОЭЛЕКТРОННЫХ СРЕДСТВАХ 4. ХУТОРОВА О.Г. СТЕНИН Ю.М. ФАХРТДИНОВ Р.Х. МОРОЗОВА Л.В. ЖУРАВЛЕВ А.А. ТЕПЛОВ В.Ю. ЗЫКОВ Е.Ю. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ 5. «Объектно-ориентированное программирование в С++» Р. Лафоре

Общие сведения, а также саму программу можно скачать по ссылке: File:Проект1.zip