Периодические граничные условия — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(top)
Строка 1: Строка 1:
 
[[Виртуальная лаборатория]]>[[Периодические граничные условия]] <HR>
 
[[Виртуальная лаборатория]]>[[Периодические граничные условия]] <HR>
  
"""Краткое описание"""<br />
 
 
Метод периодических граничных условий был разработан для решения задач теории жидкостей и плотных газов. Он состоит в том,что вокруг расчетной области строятся ее «образы» с актуальным положением частиц. И частицы «реальной» области взаимодействуют с частицами в «образе». А если частица пересекает границу расчетной области, она появляется с другой стороны. В теореме Нетер утверждается, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения:<br />  
 
Метод периодических граничных условий был разработан для решения задач теории жидкостей и плотных газов. Он состоит в том,что вокруг расчетной области строятся ее «образы» с актуальным положением частиц. И частицы «реальной» области взаимодействуют с частицами в «образе». А если частица пересекает границу расчетной области, она появляется с другой стороны. В теореме Нетер утверждается, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения:<br />  
 
однородности времени соответствует закон сохранения энергии,<br />  
 
однородности времени соответствует закон сохранения энергии,<br />  

Версия 11:57, 22 декабря 2015

Виртуальная лаборатория>Периодические граничные условия

Метод периодических граничных условий был разработан для решения задач теории жидкостей и плотных газов. Он состоит в том,что вокруг расчетной области строятся ее «образы» с актуальным положением частиц. И частицы «реальной» области взаимодействуют с частицами в «образе». А если частица пересекает границу расчетной области, она появляется с другой стороны. В теореме Нетер утверждается, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения:
однородности времени соответствует закон сохранения энергии,
однородности пространства соответствует закон сохранения импульса,
изотропии пространства соответствует закон сохранения момента импульса,
калибровочной симметрии соответствует закон сохранения электрического заряда и т. д.
Но для классической системы частиц с периодическими условиями сохранение момента импульса нарушается.

Цель работы:

  • Визуализация системы частиц с периодическими граничными условиями.
  • Построение графиков зависимости кинетического момента от времени для одной частицы, двух частиц, многих частиц.

Граничные условия:

если [math] x \gt w [/math], то [math] x = x - w [/math]

если [math] x \lt 0 [/math], то [math] x = x + w [/math]

если [math] y \gt h [/math], то [math] y = y - h [/math]

если [math] y \lt 0 [/math], то [math] y = y + h [/math]

Где x и у - это координаты частицы, а w и h - ширина и длина окна соответственно.

Кинетический момент вычисляется по формуле:

[math]L(t) = \sum_{i\in\wedge(t)} r_i\times mV_i [/math]

Результаты программы