Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Реализация)
Строка 12: Строка 12:
  
 
==Реализация==
 
==Реализация==
===Конечно-разностная схема===
+
===Явная схема с перешагиванием===
  
 
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка.
 
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка.
Строка 22: Строка 22:
 
:<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math>
 
:<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math>
 
Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле.
 
Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле.
 
  
 
==Компьютерная реализация==
 
==Компьютерная реализация==

Версия 23:16, 13 декабря 2015

Постановка задачи

Решается однородное уравнение теплопроводности на промежутке [math]\left[0\ldots 1\right][/math]

[math]\frac{\partial T\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2} = f(x,t)[/math]

С граничными условиями

[math] \begin{cases} T(0,t) = T0(t)=cos(2t)+0.5 \\ T(1,t) = T1(t)=sin(2t)+0.5 \end{cases}[/math]

и начальным распределением температуры

[math]T(x,0) = T0(x)=36.6x[/math]


Реализация

Явная схема с перешагиванием

Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде

[math]\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}[/math]

Введем равномерную сетку [math]0 \lt x_i \lt L[/math] с шагом разбиения [math]Δx[/math]. Шаг по времени назовем [math]Δt[/math] Построим явную конечно-разностную схему:

[math]\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)[/math]

Где, [math]T_i[/math] — значение температуры в [math]i[/math]-ом узле.

Компьютерная реализация

Скачать программу File:HeatEq_Yan.zip


Результаты

Безымянный1.jpg
Безымянный.jpg
  • При малом числе узлов в сетки, для данной многопроцессовой реализации, время расчета увеличивается.
  • При увеличении числа процессов время расчета существенно сокращается, что делает целесообразным использование данного метода.

Полезные ссылки

Уравнение теплопроводности