Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Ян (обсуждение | вклад) |
Ян (обсуждение | вклад) (→Реализация) |
||
Строка 12: | Строка 12: | ||
==Реализация== | ==Реализация== | ||
− | === | + | ===Явная схема с перешагиванием=== |
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. | Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. | ||
Строка 22: | Строка 22: | ||
:<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | :<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | ||
Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле. | Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле. | ||
− | |||
==Компьютерная реализация== | ==Компьютерная реализация== |
Версия 23:16, 13 декабря 2015
Содержание
Постановка задачи
Решается однородное уравнение теплопроводности на промежутке
С граничными условиями
и начальным распределением температуры
Реализация
Явная схема с перешагиванием
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде
Введем равномерную сетку
с шагом разбиения . Шаг по времени назовем Построим явную конечно-разностную схему:Где,
— значение температуры в -ом узле.Компьютерная реализация
Скачать программу File:HeatEq_Yan.zip
Результаты
- При малом числе узлов в сетки, для данной многопроцессовой реализации, время расчета увеличивается.
- При увеличении числа процессов время расчета существенно сокращается, что делает целесообразным использование данного метода.