Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Ян (обсуждение | вклад) |
Ян (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
==Постановка задачи== | ==Постановка задачи== | ||
− | |||
Решается однородное [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 уравнение теплопроводности] на промежутке <math>\left[a\ldots b\right]</math> | Решается однородное [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 уравнение теплопроводности] на промежутке <math>\left[a\ldots b\right]</math> | ||
− | :<math>\frac{\partial | + | :<math>\frac{\partial T\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2} = f(x,t)</math> |
С граничными условиями | С граничными условиями | ||
:<math> \begin{cases} | :<math> \begin{cases} | ||
− | + | T(a,t) = T0(t)=cos(2t)+0.5 \\ | |
− | + | T(b,t) = T1(t)=sin(2t)+0.5 | |
\end{cases}</math> | \end{cases}</math> | ||
и начальным распределением температуры | и начальным распределением температуры | ||
− | :<math> | + | :<math>T(x,0) = T0(x)=36.6x</math> |
− | *Где :<math>f(x,t), | + | *Где :<math>f(x,t), T0(x), M1(t), M2(t)</math> - Известные функции |
==Реализация== | ==Реализация== | ||
Строка 17: | Строка 16: | ||
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. | Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. | ||
Запишем исходное уравнение в виде | Запишем исходное уравнение в виде | ||
− | :<math>\frac{\partial | + | :<math>\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}</math> |
Введем равномерную сетку <math>0 < x_i < L</math> с шагом разбиения <math>Δx</math>. Шаг по времени назовем <math>Δt</math> | Введем равномерную сетку <math>0 < x_i < L</math> с шагом разбиения <math>Δx</math>. Шаг по времени назовем <math>Δt</math> | ||
Построим явную конечно-разностную схему: | Построим явную конечно-разностную схему: | ||
− | :<math>\frac{ | + | :<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> |
− | Где, <math> | + | Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле. |
+ | |||
+ | |||
+ | ==Компьютерная реализация== | ||
+ | Компьютерную реализацию программы можно найти в | ||
+ | |||
+ | ==Результаты== | ||
==Полезные ссылки== | ==Полезные ссылки== | ||
[https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Уравнение теплопроводности] | [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Уравнение теплопроводности] |
Версия 21:30, 9 декабря 2015
Содержание
Постановка задачи
Решается однородное уравнение теплопроводности на промежутке
С граничными условиями
и начальным распределением температуры
- Где : - Известные функции
Реализация
Конечно-разностная схема
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде
Введем равномерную сетку
с шагом разбиения . Шаг по времени назовем Построим явную конечно-разностную схему:Где,
— значение температуры в -ом узле.
Компьютерная реализация
Компьютерную реализацию программы можно найти в