Heat transfer in a 1D harmonic crystal — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
м |
(→Macroscopic equations) |
||
Строка 29: | Строка 29: | ||
== Macroscopic equations == | == Macroscopic equations == | ||
− | — Heat (Fourier): <math>\dot T = \beta T''</math> | + | {{oncolor||red|—}} Heat (Fourier): <math>\dot T = \beta T''</math> |
− | — Heat wave (MCV): <math>\ddot T +\frac1\tau\dot T = \frac\beta\tau T''</math> | + | {{oncolor||#008888|—}} Heat wave (MCV): <math>\ddot T +\frac1\tau\dot T = \frac\beta\tau T''</math> |
− | — Wave (d’Alembert): <math>\ddot T = c^2 T''</math> | + | {{oncolor||#00ff00|—}} Wave (d’Alembert): <math>\ddot T = c^2 T''</math> |
− | — Reversible (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math> | + | {{oncolor||blue|—}} Reversible (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math> |
Notations: | Notations: |
Версия 23:32, 25 сентября 2015
Виртуальная лаборатория > Heat transfer in a 1D harmonic crystal
Theory: A.M. Krivtsov, published at arXiv:1509.02506 (cond-mat.stat-mech)
Programming: D.V. Tsvetkov
Model
We consider a one-dimensional crystal, described by the following equations of motion:
where
is the displacement of the th particle, is the particle mass, is the stiffness of the interparticle bond. The crystal is infinite: the index is an arbitrary integer. The initial conditions arewhere
are independent random values with zero expectation and unit variance; is variance of the initial velocities of the particles, which is a slowly varying function of the spatial coordinate , where is the lattice constant. These initial conditions correspond to an instantaneous temperature perturbation, which can be induced in crystals, for example, by an ultrashort laser pulse.Macroscopic equations
— Heat (Fourier):
— Heat wave (MCV):
— Wave (d’Alembert):
— Reversible (Krivtsov):
Notations:
is time (variable), is the relaxation time (constant), is the thermal diffusivity, is the thermal conductivity, is the sound speed, is the density.