Ольга Бразгина: Моделирование деформирования твердых гранулированных частиц: влияние формы на деформационное поведение — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Моделирование сжатия гранул с внутренней полостью)
Строка 51: Строка 51:
  
 
== Моделирование сжатия гранул с внутренней полостью ==
 
== Моделирование сжатия гранул с внутренней полостью ==
 +
В ходе работы рассмотрена задача деформирования частиц с внутренней полостью.
 +
[[Файл:hollow_compr.jpg|150px|thumb|right| Схематичное изображение деформируемой гранулы]]
 +
При деформировании одна из плоскостей (нижняя) принималась неподвижной, для второй было задано перемещение относительно начального положения.
 +
 +
При различном отношении внутреннего радиуса <math>R_2</math> к внешнему радиусу <math>R_1</math> проведено моделирование в пакете ABAQUS 6.11-2. Радиус сферической частицы был задан равным 25 мкм, внутренний радиус варьировался от полной частицы (<math>{R_2}/{R_1}=0</math>) до тонкостенной гранулы (<math>{R_2}/{R_1}=0.95</math>) и аналогичной оболочки. При решении материал также принят изотропно-упругим, с теми же свойствами, что и в предыдущей задаче.
 +
 +
В ходе решения ряда задач были построены поля напряжений и деформаций, а также зависимости сил сжатия от перемещения при различных соотношениях радиусов.
 +
[[Файл:stress.png|150px|thumb|right| Схематичное изображение деформируемой гранулы]]
  
 
==Моделирование разрушения ==
 
==Моделирование разрушения ==

Версия 22:27, 19 июня 2013

Описание

Данная работа выполняется в рамках Гамбургского проекта при поддержке стипендиальной программы "Леонард Эйлер" немецкой службы академических обменов (DAAD).

Участники

Стипендиат: О. Бразгина

Руководители со стороны СПбГПУ: А.М. Кривцов, В.А. Кузькин

Руководители со стороны TUHH: S. Heinrich, S. Antonyuk

Аннотация

Зачастую форма гранулированных частиц существенно отличается от сферической. Существующие на данный момент аналитические модели контактного взаимодействия не позволяют учитывать многие особенности деформирования, ограничиваясь лишь наиболее простыми предположениями.

Изображения гранул диоксида титана, полученные в TUHH

В частности, не существует теории, описывающей более сложную по сравнению со сферической геометрию частицы. Численное моделирование предоставляет большое поле деятельности путем простого варьирования различных параметров модели, учет тех или иных необходимых свойств, что несравнимо сложнее при аналитическом подходе. Поэтому рассмотрение влияния геометрии частиц путем численного моделирования является необходимым. Моделирование деформационного поведения частиц эллипсоидальной формы позволяет более точно описать отклик частиц неправильной формы, т.к. частиц эллипсоидальной формы являются наиболее простыми несферическими частицами. Моделирование частиц, обладающих внутренней полостью, необходимо для оценки ее прочностных характеристик, которые накладывают ограничение на использование таких гранул.

В данной работе рассматривается упругое, упругопластическое деформирование и разрушение частиц эллипсоидальной формы, а также частиц, обладающих внутренней полостью, определяются зависимости откликов для частиц несферической формы от отклика частиц сферической формы, анализируются критические параметры разрушения частиц.

Моделирование сжатия гранул эллипсоидальной формы

При различном соотношении полуосей эллипсоида a и b проведено моделирование в конечно-элементном пакете ABAQUS 6.11-2. Радиус сферической частицы был задан равным 25 мкм, полуоси частиц для других экспериментов были заданы таким образом, чтобы объем частиц был одинаковым и совпадал с объемом сферы. При этом соотношения полуосей [math]a/b[/math] менялось от 1 (соответствует сфере) до 0.5. Материал принят изотропно-упругим ([math]E=230[/math] МПа, [math]\nu=0.3[/math]), коэффициент трения между частицей и обкладкой принят равным [math]\mu=0.3[/math]). Результаты, полученные для сферической частицы, как показано ранее, близки к аналитическому решению задачи Герца (Механика контактного взаимодействия). Задача решалась в трехмерной постановке, построенная сетка конечных элементов имеет сгущение вблизи области контакта частицы и сжимающей обкладки.

Эллипсоидальная частица в горизонтальном положении
Эллипсоидальная частица в вертикальном положении

В ходе решения статической задачи были получены поля перемещений, напряжений, а также значения силы контактного взаимодействия. Качественно распределение полей напряжений в эллипсоиде соответствует решению задачи Герца, однако силы, полученные в данном случае несколько отличаются от решения упругой задачи: силы при сжатии эллипсоида несколько больше сил, полученных при сжатии частицы сферической формы, при сжатии частицы в горизонтальном положении, и меньше - в вертикальном. Кроме того, прослеживается зависимость изменения силы от соотношения полуосей эллипсоида.

Зависимость силы F от перемещения s для частицы в горизонтальном положении
Зависимость силы F от перемещения s для частицы в вертикальном положении

Для аналитического описания силы сжатия частицы эллипсоидальной формы в обоих случаях были построены соотношения, описывающие связь силы сжатия эллипсоида и силы сжатия сферической частицы. В случае горизонтально расположенной частицы она определяется выражением:

[math] F_N = F_{sphere}\left[1+\left(12.5 \frac{s}{D_{sphere}}+0.93\right)\left(1-\frac{a}{b}\right)^{1.5}\right], [/math]

а в случае вертикально расположенной -

[math] F_N = F_{sphere}\left[1+1.6\left( \frac{s}{D_{sphere}} \right) ^{0.17}\left(1-\frac{a}{b}\right)\right]. [/math]

Для проверки полученных зависимостей проведено моделирование с целью исследования влияния материальных и геометрических параметров модели. Отмечено небольшое влияние коэффициента Пуассона на отклик частицы. Результаты моделирования, полученные при различных значениях этого коэффициента. Максимальное отличие данных, полученных в ходе моделирования и при аппроксимации - всего 6% - получено при значении коэффициента Пуассона [math]\nu = -0.25[/math].

Моделирование сжатия гранул с внутренней полостью

В ходе работы рассмотрена задача деформирования частиц с внутренней полостью.

Схематичное изображение деформируемой гранулы

При деформировании одна из плоскостей (нижняя) принималась неподвижной, для второй было задано перемещение относительно начального положения.

При различном отношении внутреннего радиуса [math]R_2[/math] к внешнему радиусу [math]R_1[/math] проведено моделирование в пакете ABAQUS 6.11-2. Радиус сферической частицы был задан равным 25 мкм, внутренний радиус варьировался от полной частицы ([math]{R_2}/{R_1}=0[/math]) до тонкостенной гранулы ([math]{R_2}/{R_1}=0.95[/math]) и аналогичной оболочки. При решении материал также принят изотропно-упругим, с теми же свойствами, что и в предыдущей задаче.

В ходе решения ряда задач были построены поля напряжений и деформаций, а также зависимости сил сжатия от перемещения при различных соотношениях радиусов.

Файл:Stress.png
Схематичное изображение деформируемой гранулы

Моделирование разрушения

Результаты

В данной работе проведено конечно-элементное моделирование деформирования упругих частиц, сжимаемых недеформируемыми плоскостями. Рассмотрены частицы с геометрией, отличной от идеальной сферической частицы: частицы эллипсоидальной формы и сферические частицы с внутренней полостью.

Решена тестовая задача для упругой частицы, в которой проведено сравнение численных расчетов и аналитического решения задачи Герца, а также результатов расчетов в различных конечно-элементных пакетах между собой.

При моделировании частиц в форме двухосного эллипсоида проведено сжатие в направлении обеих осей, определены зависимости сил от перемещений, построены поля напряжений. При этом вид деформационной кривой соответствует решению задачи Герца. Аппроксимирована зависимость, позволяющая аналитически определить решение задачи контактного сжатия эллипсоидального тела с жесткой поверхностью путем уточнения решения соответствующей задачи для сферической частицы. Данные зависимости проверены на влияние всех геометрических и материальных параметров модели, существенных погрешностей при расчете не выявлено. Максимальные погрешности, полученные в ходе варьирования параметров модели, не превышают 5%, вследствие чего использование выведенных формул позволяет проводить моделирование процессов с помощью полученных соотношений и верификацию экспериментальных данных с учетом известной геометрией частицы. Проведено сравнение с экспериментальными результатами, в ходе которого выявлено, что на протяжении всего деформирования вплоть до первичного разрушения деформационная кривая сжатия эллипсоида лучше соответствует экспериментальным результатам, чем модель Герца.

При моделировании сжатия частицы, обладающей внутренней полостью, также построены деформационные кривые и поля напряжений, аппроксимирована зависимость, позволяющая определить решение задачи путем уточнения решения задачи Герца. Обнаружено, что для тонких сферических частиц зависимость силы от перемещения близка к линейной. Была определена жесткость моделируемых частиц и исследовано влияние различных параметров модели. Получено соотношение, позволяющее определить жесткость полых сферических частиц в зависимости от толщины стенки, которая играет важную роль для дальнейшего моделирования взаимодействия частиц.

В ходе работы решен ряд задач о разрушении частиц. Для проверки методики моделирования проведен бразильский тест, полученные результаты которого хорошо согласуются с полученными другими методам. Определены критические параметры разрушения для эллипсоидальных и полых частиц при различном соотношении геометрических параметров.

Полученные результаты играют важную роль при дальнейшем моделировании взаимодействия совокупности частиц и для подбора оптимальных геометрических и прочностных характеристик с учетом необходимых свойств гранул.

Литература

См. также