Степанов Алексей. Курсовой проект по теоретической механике — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Aleste (обсуждение | вклад) (→Решение) |
Aleste (обсуждение | вклад) (→Решение) |
||
Строка 39: | Строка 39: | ||
</gallery> | </gallery> | ||
Очевидно, что модуль силы Архимеда остается постоянным(так как постоянным остается объем погруженной части тела в силу симметрии тела). | Очевидно, что модуль силы Архимеда остается постоянным(так как постоянным остается объем погруженной части тела в силу симметрии тела). | ||
− | Меняется только точка приложения, что и создает момент силы Архимеда, вызывающий колебания. | + | Меняется только точка приложения, что и создает момент силы Архимеда, вызывающий колебания. Тогда уравнения примут вид:<br> |
+ | <math>\Theta_c \ddot x\varphi</math> | ||
== Обсуждение результатов и выводы == | == Обсуждение результатов и выводы == |
Версия 22:22, 29 мая 2012
Содержание
Тема проекта
Описание колебаний плавающих тел.
Постановка задачи
Найти уравнение колебаний для следующих тел:
1) Шар
2) Параллелепипед
- Вертикальные колебания
- "Бортовая качка"
Решение
1) Шар
ПУР:
Второй закон Ньютона примет вид:
;
Так как формула имеет вид
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Вертикальные колебания параллелепипеда
ПУР:
Второй закон Ньютона примет вид:
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Бортовая качка
Очевидно, что модуль силы Архимеда остается постоянным(так как постоянным остается объем погруженной части тела в силу симметрии тела).
Меняется только точка приложения, что и создает момент силы Архимеда, вызывающий колебания. Тогда уравнения примут вид:
Обсуждение результатов и выводы
1) Интересно то, что