Степанов Алексей. Курсовой проект по теоретической механике — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Aleste (обсуждение | вклад) (→Обсуждение результатов и выводы) |
(→Решение) |
||
Строка 29: | Строка 29: | ||
<math>m \ddot x = mg -\rho g S (d_o + x)</math><br> | <math>m \ddot x = mg -\rho g S (d_o + x)</math><br> | ||
<math>m \ddot x = -\rho g S x</math><br> | <math>m \ddot x = -\rho g S x</math><br> | ||
− | Остается проверить размерность величины <math>\frac{\rho g S} {m}</math> <br> | + | Остается проверить размерность величины <math>\frac{\rho g S} {m} = \frac {kg m^3} {s^2 m^3 kg} = \frac {1} {s^2}</math> <br> |
Уравнение колебаний найдено.<br> | Уравнение колебаний найдено.<br> | ||
Версия 21:47, 29 мая 2012
Содержание
Тема проекта
Описание колебаний плавающих тел.
Постановка задачи
Найти уравнение колебаний для следующих тел:
1) Шар
2) Параллелепипед
- Вертикальные колебания
- "Бортовая качка"
Решение
1) Шар
ПУР:
Второй закон Ньютона примет вид:
;
Так как формула имеет вид
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Вертикальные колебания параллелепипеда
ПУР:
Второй закон Ньютона примет вид:
Остается проверить размерность величины
Уравнение колебаний найдено.
Обсуждение результатов и выводы
1) Интересно то, что