Краморов Данил. Курсовой проект по теоретической механике — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Решение)
(Решение)
Строка 6: Строка 6:
  
 
== Решение ==
 
== Решение ==
Рассмотрим второй закон Ньютона. В горизонтальном направление на шарик действуют только две силы: подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.
+
Рассмотрим второй закон Ньютона. В горизонтальном направление на шарик действуют только две силы: подъемная сила (объясняемая [http://ru.wikipedia.org/wiki/%DD%F4%F4%E5%EA%F2_%CC%E0%E3%ED%F3%F1%E0| эффектом Магнуса]) и сила аэродинамического сопротивления.
  
 
<math>m \ddot x = \frac{1} {2} \rho \upsilon^2 ACl - A \dot x^2;</math><br>
 
<math>m \ddot x = \frac{1} {2} \rho \upsilon^2 ACl - A \dot x^2;</math><br>
Строка 17: Строка 17:
 
[[Файл:Norm.png|thumb|400px|right| Распределение Гаусса]]
 
[[Файл:Norm.png|thumb|400px|right| Распределение Гаусса]]
  
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке.  Найти требуемую функцию можно разными способами. Максимальная скорость (5.6 м/с, расчет был произведен в эксперименте, изучающем закон Бернулли) будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет повторять функцию распределения вероятностей (нормальное распределение, распределение Гаусса). Функция плотности распределения имеет вид:
+
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке.  Найти требуемую функцию можно разными способами. Максимальная скорость (5.6 м/с, расчет был произведен в эксперименте, изучающем закон Бернулли) будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет повторять функцию распределения вероятностей ([http://ru.wikipedia.org/wiki/%CD%EE%F0%EC%E0%EB%FC%ED%EE%E5_%F0%E0%F1%EF%F0%E5%E4%E5%EB%E5%ED%E8%E5 распределение Гаусса]). Функция плотности распределения имеет вид:
 
<br>
 
<br>
 
<br>
 
<br>

Версия 17:00, 26 мая 2012

Тема проекта

Колебания шарика в вертикальном воздушном потоке

Постановка задачи

Тело - в данном эксперименте шарик для настольного тенниса - помещается на край вертикального воздушного потока (создается феном). Подчиняясь закону Бернулли, шарик будет пытаться стабилизироваться в центре потока, совершая колебания. Требуется найти уравнение колебаний шарика. Рассматриваются только горизонтальные колебания внутри потока.

Решение

Рассмотрим второй закон Ньютона. В горизонтальном направление на шарик действуют только две силы: подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.

[math]m \ddot x = \frac{1} {2} \rho \upsilon^2 ACl - A \dot x^2;[/math]

[math] \rho[/math] — плотность жидкости
[math] \upsilon[/math] — скорость шара
A — поперечная площадь шара
Cl — коэффициент подъёмной силы

Распределение Гаусса

Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость (5.6 м/с, расчет был произведен в эксперименте, изучающем закон Бернулли) будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет повторять функцию распределения вероятностей (распределение Гаусса). Функция плотности распределения имеет вид:

[math]f(x)= \frac{1} {\sigma \sqrt{2\pi}} e^{-\frac{(x- \mu)^2} {\sigma^2}}[/math]

[math] \mu[/math] - коэффициент сдвига (вещественное число)
[math] \sigma[/math] - коэффициент масштаба (вещественный, строго положительный)

Представляя данную функцию функцией скорости, получаем зависимость от местоположения в потоке.
[math] \mu[/math] = d/2, [math] \sigma[/math] = d/6, где d - диаметр потока.

[math] \upsilon(x)= \frac{1} {\frac{d} {6} \sqrt{2\pi}} e^{-\frac{(x- \frac{d} {2})^2} {({\frac{d} {6}})^2}}[/math]
[math] \upsilon(x)= \frac{6} {d \sqrt{2\pi}} e^{-\frac{9(2x- d)^2} {d^2}}[/math]

Общая формула будет иметь вид:

[math]m \ddot x = \frac{k} {\pi d^2} e^{-\frac{(2x- d)^2} {d^2}} - A \dot x^2;[/math]

где A = 12,56*10^{-4}, k = 7*10^{-4};

Обсуждение результатов и выводы

Ссылки по теме

См. также