Краморов Данил. Курсовой проект по теоретической механике — различия между версиями
Данил (обсуждение | вклад) (→Решение) |
Данил (обсуждение | вклад) (→Решение) |
||
Строка 29: | Строка 29: | ||
<math> \mu</math> = d/2, <math> \sigma</math> = d/6, где d - диаметр потока.<br> | <math> \mu</math> = d/2, <math> \sigma</math> = d/6, где d - диаметр потока.<br> | ||
+ | <math> \upsilon(x)= \frac{1} {\frac{d} {6} \sqrt{2\pi}} e^{-\frac{(x- \frac{d} {2})^2} {({\frac{d} {6}})^2}}</math><br> | ||
<math> \upsilon(x)= \frac{6} {d \sqrt{2\pi}} e^{-\frac{9(2x- d)^2} {d^2}}</math><br> | <math> \upsilon(x)= \frac{6} {d \sqrt{2\pi}} e^{-\frac{9(2x- d)^2} {d^2}}</math><br> | ||
+ | |||
+ | Общая формула будет иметь вид:<br> | ||
+ | <br> | ||
+ | <math>m \ddot x = \frac{k} {\pi d^2} e^{-\frac{(2x- d)^2} {d^2}} - A \dot x^2;</math><br> | ||
+ | <br> | ||
+ | где A = 12,56*10^{-4}, k = 7*10^{-4}; | ||
== Обсуждение результатов и выводы == | == Обсуждение результатов и выводы == |
Версия 16:07, 26 мая 2012
Содержание
Тема проекта
Колебания шарика в вертикальном воздушном потоке
Постановка задачи
Тело - в данном эксперименте шарик для настольного тенниса - помещается на край вертикального воздушного потока (создается феном). Подчиняясь закону Бернулли, шарик будет пытаться стабилизироваться в центре потока, совершая колебания. Требуется найти уравнение колебаний шарика. Рассматриваются только горизонтальные колебания внутри потока.
Решение
Рассмотрим второй закон Ньютона. В горизонтальном направление на шарик действуют только две силы: подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.
— скорость шара
A — поперечная площадь шара
Cl — коэффициент подъёмной силы
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость (5.6 м/с, расчет был произведен в эксперименте, изучающем закон Бернулли) будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет повторять функцию распределения вероятностей (нормальное распределение, распределение Гаусса). Функция плотности распределения имеет вид:
- коэффициент сдвига (вещественное число)
- коэффициент масштаба (вещественный, строго положительный)
Представляя данную функцию функцией скорости, получаем зависимость от местоположения в потоке.
= d/2, = d/6, где d - диаметр потока.
Общая формула будет иметь вид:
где A = 12,56*10^{-4}, k = 7*10^{-4};