Краморов Данил. Курсовой проект по теоретической механике — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Решение)
(Решение)
Строка 27: Строка 27:
  
 
Представляя данную функцию функцией скорости, получаем зависимость от местоположения в потоке.
 
Представляя данную функцию функцией скорости, получаем зависимость от местоположения в потоке.
 +
<math> \mu</math> = d/2<br>
 +
<math> \sigma</math> = d/6<br>
  
 
== Обсуждение результатов и выводы ==
 
== Обсуждение результатов и выводы ==

Версия 15:06, 26 мая 2012

Тема проекта

Колебания шарика в вертикальном воздушном потоке

Постановка задачи

Тело - в данном эксперименте шарик для настольного тенниса - помещается на край вертикального воздушного потока (создается феном). Подчиняясь закону Бернулли, шарик будет пытаться стабилизироваться в центре потока, совершая колебания. Требуется найти уравнение колебаний шарика. Рассматриваются только горизонтальные колебания внутри потока.

Решение

Рассмотрим второй закон Ньютона. В горизонтальном направление на шарик действуют только две силы: подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.

[math]m \ddot x = \frac{1} {2} \rho \upsilon^2 ACl - A \dot x^2;[/math]

[math] \rho[/math] — плотность жидкости
[math] \upsilon[/math] — скорость шара
A — поперечная площадь шара
Cl — коэффициент подъёмной силы

Распределение Гаусса

Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость (5.6 м/с, расчет был произведен в эксперименте, изучающем закон Бернулли) будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет повторять функцию распределения вероятностей (нормальное распределение, распределение Гаусса). Функция плотности распределения имеет вид:

[math]f(x)= \frac{1} {\sigma \sqrt{2\pi}} e^{-\frac{(x- \mu)^2} {\sigma^2}}[/math]

[math] \mu[/math] - коэффициент сдвига (вещественное число)
[math] \sigma[/math] - коэффициент масштаба (вещественный, строго положительный)

Представляя данную функцию функцией скорости, получаем зависимость от местоположения в потоке. [math] \mu[/math] = d/2
[math] \sigma[/math] = d/6

Обсуждение результатов и выводы

Ссылки по теме

См. также