Дзенушко Дайнис. Курсовой проект по теоретической механике — различия между версиями
Dainis (обсуждение | вклад) (→Решение) |
Dainis (обсуждение | вклад) (→Тема проекта) |
||
Строка 1: | Строка 1: | ||
== Тема проекта == | == Тема проекта == | ||
− | Описание | + | Описание колебаний двойного маятника |
+ | |||
== Постановка задачи == | == Постановка задачи == | ||
Стержень прикреплен к потолку посредством циллиндрического шарнира. Cнизу к этому стержню прикреплен второй также посредством циллиндрического шарнира таким образом что когда маятник вытянут вдоль вертикали, обе оси вращения шарниров расположены в горизонтальной плоскости а угол между ними составляет <math>\alpha</math>. Диссипативные силы не учитываются.<br> | Стержень прикреплен к потолку посредством циллиндрического шарнира. Cнизу к этому стержню прикреплен второй также посредством циллиндрического шарнира таким образом что когда маятник вытянут вдоль вертикали, обе оси вращения шарниров расположены в горизонтальной плоскости а угол между ними составляет <math>\alpha</math>. Диссипативные силы не учитываются.<br> |
Версия 20:21, 21 мая 2012
Содержание
Тема проекта
Описание колебаний двойного маятника
Постановка задачи
Стержень прикреплен к потолку посредством циллиндрического шарнира. Cнизу к этому стержню прикреплен второй также посредством циллиндрического шарнира таким образом что когда маятник вытянут вдоль вертикали, обе оси вращения шарниров расположены в горизонтальной плоскости а угол между ними составляет
Параметры системы:
- Тензоры инерции первого и второго стержней равны и соответственно.
- Длины стержней равны a и b, их массы и соответственно первому и второму стержням.
- Угол между осями вращения шарниров равен
- - угол между первым стержнем и вертикалью
- - угол между осью первого стержня и вторым стержнем т.е. угол во втором шарнире относительно вытянутого положения
Задача:
- Найти уравнение движения системы
Решение
Определимся с подходом к решению: Задачу будем решать при помощи уравнения Лагранжа имеющего следующий вид:
Выберем обобщенные координаты: в качестве обобщенных координат возьмем углы и
- В нашем случае отсутствуют обощенные силы, соответствующие непотенциальным взаимодействиям.
Найдем потенциальную и кинетическую энергии системы:
- Потенциальная энергия системы
- Кинетическая энергия системы
- Кинетическая энергия первого стержня
- Потенциальная энергия первого стержня