Курсовой проект "Моделирование удара шара об стену" — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
 
(не показано 7 промежуточных версий 2 участников)
Строка 23: Строка 23:
 
   \underline{F}_{R_1}, \underline{F}_{R_2}\\
 
   \underline{F}_{R_1}, \underline{F}_{R_2}\\
 
</math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно;
 
</math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно;
 
 
<math>
 
<math>
 
   \underline{P}
 
   \underline{P}
 +
 
</math> - давление создаваемое газом;
 
</math> - давление создаваемое газом;
  
Строка 56: Строка 56:
  
 
==Визуализация модели==
 
==Визуализация модели==
 +
Моделирование удара при большой жесткости пружин:
 +
 +
[[File:BallToWall_LSOptim.gif]]
 +
 +
Моделирование удара при малой жесткости пружин:
 +
 +
[[File:BallToWallOptim.gif]]

Текущая версия на 12:04, 20 января 2022

Курсовой проект по Механике дискретных сред

Исполнитель: Грешников Павел

Группа: 5030103/80101

Семестр: осень 2021

Постановка задачи[править]

Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.

Математическая модель[править]

Уравнение движение для каждой из материальных точек записывается следующим образом:

[math] m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{P}+\underline{F}_{Wall}\\ \underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n [/math]

где [math] \underline{F}_{R_1}, \underline{F}_{R_2}\\ [/math] - силы упругости действующие на [math]i[/math]-ую частицу со стороны [math]i-1[/math] и [math]i+1[/math] соответственно; [math] \underline{P} [/math] - давление создаваемое газом;

[math] \underline{F}_{Wall}\\ [/math] - сила взаимодействия между воздушным шаром и стеной;

Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:

[math] \underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R [/math], где [math]k_R[/math] - коэффициент жесткости пружины.

Давление:

[math] \underline{P}=(\frac{V_{0}}{V}-1)l_{12} P \underline{n} [/math], где [math] V [/math] - актуальный объем шара, [math] V_{0} [/math] - начальный объем шара, [math] l_{12}[/math] - актуальная длина пружины, [math] P [/math] - модуль давления, [math] \underline{n}[/math] - нормаль к пружине, направленная наружу.

Взаимодействие шара со стеной:

[math] \underline{F}_{Wall}=-\nabla \Pi(r) [/math], где [math]\Pi(r)=4\varepsilon[(\frac{a}{r})^{12}-(\frac{a}{r})^6][/math]

Интегрирование уравнений движения осуществляется при помощи явного метода Эйлера.

Реализация модели[править]

Визуализацию и исходный код: https://github.com/greshnikovps/BallToWall

Визуализация модели[править]

Моделирование удара при большой жесткости пружин:

BallToWall LSOptim.gif

Моделирование удара при малой жесткости пружин:

BallToWallOptim.gif