Моделирование упругого шарика об стенку — различия между версиями
(Новая страница: «{{#widget:Iframe |url=https://aneyaka.github.io/obolochka/ |width=1000 |height=1000 |border=0 }}») |
(→Математическая модель) |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
+ | '''''Курсовой проект по [[Механика дискретных сред|Механике дискретных сред]]''''' | ||
+ | |||
+ | '''Исполнитель:''' [[Черницына Анна]] | ||
+ | |||
+ | '''Группа:''' 5030103/80101 | ||
+ | |||
+ | '''Семестр:''' осень 2021 | ||
+ | |||
+ | ==Постановка задачи== | ||
+ | Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. | ||
+ | Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса. | ||
+ | |||
+ | ==Математическая модель== | ||
+ | |||
+ | <math> | ||
+ | m\underline{\ddot{x}}_i(t)=\underline{F}_{R_1}+\underline{F}_{R_2}+\underline{F}_{D_1}+\underline{F}_{D_2}+\underline{P}+\underline{F}_{Wall}\\ | ||
+ | \underline{x}_i(0)=\underline{x}_i^0,~\underline{v}_i(0)=v_i^0~~~i=1,\ldots,n | ||
+ | </math> | ||
+ | |||
+ | |||
+ | где | ||
+ | <math> | ||
+ | \underline{F}_{R_1}, \underline{F}_{R_2}\\ | ||
+ | </math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | ||
+ | |||
+ | <math> | ||
+ | \underline{F}_{D_1},\underline{F}_{D_2}\\ | ||
+ | </math> - силы демпфирования пружины действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно; | ||
+ | |||
+ | <math> | ||
+ | \underline{P} | ||
+ | </math> - давление создаваемое газом; | ||
+ | |||
+ | <math> | ||
+ | \underline{F}_{Wall}\\ | ||
+ | </math> - сила взаимодействия между воздушным шаром и стеной; | ||
+ | |||
+ | Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле: | ||
+ | |||
+ | <math> | ||
+ | \underline{F}_{R}= -(||\underline{r}_2-\underline{r}_1|| - l_0)k_R \frac{(\underline{r}_2-\underline{r}_1)}{||\underline{r}_2-\underline{r}_1||} | ||
+ | </math>, где <math>k_R</math> - коэффициент жесткости пружины. | ||
+ | |||
+ | Сила демпфирования: | ||
+ | |||
+ | <math> | ||
+ | \underline{F}_{D}= (\underline{v}_2-\underline{v}_1)\cdot\frac{\underline{r}_2-\underline{r}_1}{||\underline{r}_2-\underline{r}_1||}k_D\frac{(\underline{r}_2-\underline{r}_1)}{||\underline{r}_2-\underline{r}_1||} | ||
+ | </math>, где <math>k_D</math> - коэффициент демпфирования пружины. | ||
+ | |||
+ | Давление рассчитывается по следующей формуле: | ||
+ | |||
+ | <math>P = k(\frac{V_0}{V} - 1)</math> | ||
+ | |||
+ | Площадь шара вычисляется при помощи формулы площади Гаусса, позволяющей вычислить площадь произвольного многоугольника: | ||
+ | |||
+ | <math>\begin{align} | ||
+ | \mathbf{S} &= \frac{1}{2} \left| \sum_{i=1}^{n-1} x_i y_{i+1} + x_n y_1 - \sum_{i=1}^{n-1} x_{i+1} y_i - x_1 y_n \right| = \\ | ||
+ | &= \frac{1}{2} |x_1 y_2 + x_2 y_3 + \dots + x_{n-1} y_n + x_n y_1 - x_2 y_1 - x_3 y_2 - \dots - x_n y_{n-1} - x_1 y_n|, | ||
+ | \end{align}</math> | ||
+ | |||
+ | Взаимодействие частиц со стенкой реализовано с помощью потенциала Леннарда-Джонса: | ||
+ | |||
+ | <math> | ||
+ | U(r) = 4\varepsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right], | ||
+ | </math> | ||
+ | |||
+ | ==Результаты моделирования== | ||
+ | Результаты моделирования и исходный код можно посмотреть на GitHub: | ||
+ | https://github.com/Aneyaka/obolochka | ||
+ | |||
{{#widget:Iframe |url=https://aneyaka.github.io/obolochka/ |width=1000 |height=1000 |border=0 }} | {{#widget:Iframe |url=https://aneyaka.github.io/obolochka/ |width=1000 |height=1000 |border=0 }} |
Текущая версия на 10:15, 20 января 2022
Курсовой проект по Механике дискретных сред
Исполнитель: Черницына Анна
Группа: 5030103/80101
Семестр: осень 2021
Постановка задачи[править]
Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.
Математическая модель[править]
где
- силы упругости действующие на -ую частицу со стороны и соответственно;
- силы демпфирования пружины действующие на -ую частицу со стороны и соответственно;
- давление создаваемое газом;
- сила взаимодействия между воздушным шаром и стеной;
Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:
, где - коэффициент жесткости пружины.
Сила демпфирования:
, где - коэффициент демпфирования пружины.
Давление рассчитывается по следующей формуле:
Площадь шара вычисляется при помощи формулы площади Гаусса, позволяющей вычислить площадь произвольного многоугольника:
Взаимодействие частиц со стенкой реализовано с помощью потенциала Леннарда-Джонса:
Результаты моделирования[править]
Результаты моделирования и исходный код можно посмотреть на GitHub: https://github.com/Aneyaka/obolochka