Колебания одномерной цепочки — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Решение задачи)
 
(не показано 46 промежуточных версий этого же участника)
Строка 1: Строка 1:
'''''Курсовой проект по Механике дискретных сред'''''
+
[[ Курсовые_работы_по_ВМДС:_2018-2019 | Курсовые работы 2018-2019 учебного года]] > '''Колебания одномерной цепочки''' <HR>
  
'''Исполнитель:''' [[Лобанов Илья]]  
+
'''''Курсовой проект по [[Механика дискретных сред|Механике дискретных сред]]'''''
 +
 
 +
'''Исполнитель:''' [[Лобанов Илья]]
  
 
'''Группа:''' 43604/1
 
'''Группа:''' 43604/1
  
 +
'''Семестр:''' осень 2018
 +
 +
===Постановка задачи===
 +
Рассматривается цепочка из N материальных частиц P0, P1, ... Pn, ..., PN–1, каждая из которых обладает одинаковой массой m. Частицы соединены пружинками. Рассматриваются продольные колебания образующих цепочку частиц, при условии, что взаимодействие задается с помощью потенциала Леннарда-Джонса.
 +
 +
Период одного колебания:  <math> {T}_{o} = 2{\pi}\sqrt\frac {m}{C} </math>
 +
 +
===Решение задачи===
 +
Рассмотрим модель колебаний одномерной многоатомной цепочки равных масс. Пусть в этой цепочке находится N атомов. Обозначим смещение n-го атома <math> u_{n} </math>, а атома, отстоящего от него на p узлов, <math> u_{n+p} </math> . Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево.
 +
 +
Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели. Пусть атомы связаны между собой упругой силой, соответствующей потенциалу Леннарда-Джонса с коэффициентом упругости С.
 +
::<math>
 +
F(r) = \frac{12D}{a}\left[-\left(\frac{a}{r}\right)^{13} + \left(\frac{a}{r}\right)^{7}\right].
 +
</math>
 +
Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов.
 +
 +
::<math>
 +
m\ddot{r}_{i}=-\nablaП_{i}
 +
</math>
 +
 +
В качестве начальных условий имеем растянутую цепочку,перемещения всех частиц в начальный момент времени равны 1,11.
  
=Постановка задачи=
+
===Результаты===
Рассматривается цепочка из N материальных частиц P0, P1, ... Pn, ..., PN–1 элементов, каждая из которых обладает одинаковой массой m. Рассматриваются продольные колебания образующих цепочку частиц под действием сил взаимодействия между частицами цепочки, а также параллельных направлению цепочки внешних сил. Движение частицы с номером n описывается зависимостью от времени t её смещения Un относительно положения равновесия этой частицы (узла цепочки с номером n).
 
  
=Решение задачи=
+
[[File:Webp.net-gifmaker_(5).gif]]
Рассмотрим модель колебаний одномерной многоатомной цепочки равных масс. Пусть в этой цепочке находится N атомов. Обозначим смещение n-го атома un, а атома, отстоящего от него на p узлов, – un+p. Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево.
 
  
Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели. Пусть атомы связаны между собой упругой силой F с коэффициентом упругости с. Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При произвольных смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов. В соответствии с элементарным законом Гука эту силу можно представить в виде:
+
== См. также ==
  
В качестве начальных условий заданы случайные начальные скорости таким образом, что средняя скорость всех частиц равна 0. Перемещения всех частиц в начальный момент времени равны нулю. Также заданы периодические граничные условия на перемещения.
+
*[[Кафедра "Теоретическая механика"]]
 +
*[[Курсовые работы по ВМДС: 2018-2019]]
 +
*[[Введение в механику дискретных сред]]

Текущая версия на 02:25, 1 марта 2019

Курсовые работы 2018-2019 учебного года > Колебания одномерной цепочки

Курсовой проект по Механике дискретных сред

Исполнитель: Лобанов Илья

Группа: 43604/1

Семестр: осень 2018

Постановка задачи[править]

Рассматривается цепочка из N материальных частиц P0, P1, ... Pn, ..., PN–1, каждая из которых обладает одинаковой массой m. Частицы соединены пружинками. Рассматриваются продольные колебания образующих цепочку частиц, при условии, что взаимодействие задается с помощью потенциала Леннарда-Джонса.

Период одного колебания: [math] {T}_{o} = 2{\pi}\sqrt\frac {m}{C} [/math]

Решение задачи[править]

Рассмотрим модель колебаний одномерной многоатомной цепочки равных масс. Пусть в этой цепочке находится N атомов. Обозначим смещение n-го атома [math] u_{n} [/math], а атома, отстоящего от него на p узлов, [math] u_{n+p} [/math] . Примем в качестве положительных смещения атомов вправо от положения равновесия, а отрицательных – влево.

Каждый атом смещается только вдоль цепочки, что следует из требования одномерности модели. Пусть атомы связаны между собой упругой силой, соответствующей потенциалу Леннарда-Джонса с коэффициентом упругости С.

[math] F(r) = \frac{12D}{a}\left[-\left(\frac{a}{r}\right)^{13} + \left(\frac{a}{r}\right)^{7}\right]. [/math]

Найдем уравнение движения n-го и n+1-го атома в цепи. В равновесном положении силы, действующие на атомы, равны нулю. При смещениях на каждый n-й атом будет действовать сила со стороны соседних атомов.

[math] m\ddot{r}_{i}=-\nablaП_{i} [/math]

В качестве начальных условий имеем растянутую цепочку,перемещения всех частиц в начальный момент времени равны 1,11.

Результаты[править]

Webp.net-gifmaker (5).gif

См. также[править]