Метод Барнса-Хата — различия между версиями
Vaan007 (обсуждение | вклад) |
Денис (обсуждение | вклад) (→Первый этап) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 2: | Строка 2: | ||
[[File: Barns1.png|thumb|400px|right|Результат моделирования формирования планетной системы | [[File: Barns1.png|thumb|400px|right|Результат моделирования формирования планетной системы | ||
− | Земля-Луна в результате гравитационного коллапса пылевого облака | + | Земля-Луна в результате гравитационного коллапса пылевого облака]] |
= Аннотация = | = Аннотация = | ||
Строка 11: | Строка 11: | ||
= Описание метода = | = Описание метода = | ||
== Первый этап == | == Первый этап == | ||
− | [[Image: Barns2.png| | + | [[Image: Barns2.png|thumb|210px|right|Пример разбиения иерархического пространства на ячейки для двумерного случая]] |
Объединение частиц в древовидную структуру данных с учетом близости их расположения друг к другу. Существуют реализации с построением дерева путем объединения групп частиц (ближайшие частицы объединяются в пары, образуя узлы, затем пары также объединяются между собой и т.д.). Однако обычно это делается просто иерархической декомпозицией пространства на кубические ячейки. Для двумерного случая пример такого разбиения показан на рисунке справа. Ячейки в нем соответствуют узлам дерева, частицы в них — листьям. | Объединение частиц в древовидную структуру данных с учетом близости их расположения друг к другу. Существуют реализации с построением дерева путем объединения групп частиц (ближайшие частицы объединяются в пары, образуя узлы, затем пары также объединяются между собой и т.д.). Однако обычно это делается просто иерархической декомпозицией пространства на кубические ячейки. Для двумерного случая пример такого разбиения показан на рисунке справа. Ячейки в нем соответствуют узлам дерева, частицы в них — листьям. | ||
Текущая версия на 12:48, 19 сентября 2016
Виртуальная лаборатория > Метод Барнса-ХатаСодержание
Аннотация[править]
Для оптимизации некоторых задач, решаемых методом динамики частиц (таких, как моделирование образования Солнечной системы), используются иерархические методы. Они наиболее неприхотливы к различным особенностям физической модели, в частности к скачкам в распределении частиц. На доступных на сегодняшний день аппаратных ресурсах они позволяют проводить расчеты для систем с числом частиц до
, в зависимости от конкретной задачи. Существует, собственно, всего два классических иерархических алгоритма — быстрый мультипольный метод и алгоритм Барнса-Хата. Все остальные в той или иной степени являются их модификациями и комбинациями с другими методами расчета сил.В данной статье рассматривается процесс реализации алгоритма Барнса-Хата на примере двумерного случая.
Описание метода[править]
Первый этап[править]
Объединение частиц в древовидную структуру данных с учетом близости их расположения друг к другу. Существуют реализации с построением дерева путем объединения групп частиц (ближайшие частицы объединяются в пары, образуя узлы, затем пары также объединяются между собой и т.д.). Однако обычно это делается просто иерархической декомпозицией пространства на кубические ячейки. Для двумерного случая пример такого разбиения показан на рисунке справа. Ячейки в нем соответствуют узлам дерева, частицы в них — листьям.
Второй этап[править]
Для подсчета результирующей силы, действующей на какую-либо произвольно взятую частицу, совершается обход дерева от корня. При достижении очередного узла дальнейший расчет проходит по следующей схеме:
А) если узел терминальный (не имеющий дочерних элементов), то к результату просто добавляется сила, действующая со стороны этого узла;
Б) если узел не терминальный, то для потенциала, создаваемого частицами данного узла, может быть вычислена аппроксимация. С помощью критерия допустимости происходит проверка точности аппроксимации:
- если критерий удовлетворен, то аппроксимация вычисляется, и на этом обход данной ветки дерева завершается;
- если нет, то этап 2 рекурсивно повторяется для всех дочерних узлов.
Третий этап[править]
Производится интегрирование уравнений движения и пересчет скоростей и координат частиц.
Дополнение к этапу 2-Б[править]
Критерий принятия решения в пункте 2-Б в литературе обычно называется критерием допустимости (Multipole Acceptance Criteria (MAC)). Почти всегда он сводится к тому, что для частиц, находящихся близко, происходит прямое вычисление сил, а для удаленных частиц используется аппроксимация. Обычно МАС описывается при помощи величины
1) Barnes-Hut (BH) MAC: , где - расстояние от частицы до центра масс ячейки, - размер ячейки.
2) Min-distance (MD) MAC: , где - расстояние от частицы до границы ячейки, - размер ячейки.
3) Bmax MAC: , где - максимальное расстояние от центра масс ячейки до ее границы, - расстояние от частицы до центра масс ячейки.
Если условие МАС выполняется, то мультипольная аппроксимация в данном случае считается допустимой.
Программа[править]
В данной программе используется критерий допустимости Mid-distance.
Комментарий к программе:
- Левой клавишей мыши частицы можно добавлять и перемещать.
- Правой клавишей мыши частицы можно удалять.
Разработчик программы: Цветков Денис, при разработке программы были использованы материалы диссертации Александра Ле-Захарова.
Материал данной страницы скомпонован Сергеем Александровым.