Nosé–Hoover thermostat en — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Mksf (обсуждение | вклад) |
Mksf (обсуждение | вклад) |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
[[Nosé–Hoover thermostat | for Russian press here]] | [[Nosé–Hoover thermostat | for Russian press here]] | ||
− | == Description == | + | == Description of the model == |
− | Nosé–Hoover thermostat is used to keep the temperature constant in the system. | + | Nosé–Hoover thermostat is used to keep the temperature constant in the system. Equations of motion of the thermostated harmonic oscillator have the form: |
::<math> | ::<math> | ||
\left\{ | \left\{ | ||
\begin{array}{ll} | \begin{array}{ll} | ||
− | v | + | \dot{v} =\omega^2_{\rm 0} x - \gamma v \\ |
− | \displaystyle \gamma | + | \displaystyle \dot{\gamma} = \frac{1}{\tau^2} \left( \frac{T}{T_{\rm 0}} - 1\right)\\ |
\end{array} | \end{array} | ||
\right. | \right. | ||
</math> | </math> | ||
− | + | where | |
− | * <math> {\omega}_{\rm 0} = \sqrt{ \frac{c}{m}} </math> | + | * <math> {\omega}_{\rm 0} = \sqrt{ \frac{c}{m}} </math> is the eigen frequency |
− | * <math> {T_{\rm 0}} </math> | + | * <math> {T_{\rm 0}} </math> is the initial kinetic temperature of the system |
− | * <math> {T} </math> | + | * <math> {T} </math> is the current kinetic temperature of the system |
− | * <math> {v} </math> | + | * <math> {v} </math> is the velocity |
− | * <math> {\tau} </math> | + | * <math> {\tau} </math> is the relaxation time |
* <math> {tau}_{\rm 0} = 1 </math> - scale for <math> {\tau} </math> | * <math> {tau}_{\rm 0} = 1 </math> - scale for <math> {\tau} </math> | ||
Строка 30: | Строка 30: | ||
* <math> {c}_{\rm 0} = 1 </math> - scale of stiffness for <math> {c} </math> | * <math> {c}_{\rm 0} = 1 </math> - scale of stiffness for <math> {c} </math> | ||
− | == | + | == Phase-space trajectory of thermostated harmonic oscillator == |
− | The | + | The plot shows the trajectory of the thermostated harmonic oscillator in the phase-space. The equations of motion are solved numerically using leap-frog integration scheme. The followng three parameters can be changed by the user: |
− | 1) tau = <math> {\tau} </math> | + | 1) tau = <math> {\tau} </math> is the relaxation time |
− | 2) stiff = <math> {c} </math> | + | 2) stiff = <math> {c} </math> is the stiffness |
− | 3) scale | + | 3) scale is a scale parameter for a plot |
− | + | '''The last slider allows to choose the number of pre-configured experiment.''' | |
− | + | {{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Markov/Nose%E2%80%93Hoover%20thermostat/Thermostat_en.html |width=1000 |height=720 |border=0 }} | |
− | + | == Authorship == | |
+ | |||
+ | This stand has been developed by [http://tm.spbstu.ru/Nikolai_Markov Nikolai Markov]. | ||
== References == | == References == | ||
− | * [[ | + | |
− | * [ | + | * S. Nosé (1984). "A unified formulation of the constant temperature molecular-dynamics methods". J. Chem. Phys. 81 (1): 511–519. |
+ | * W.G. Hoover, (1985). "Canonical dynamics: Equilibrium phase-space distributions". Phys. Rev. A, 31 (3): 1695–1697. | ||
+ | * D.J. Evans, B.L. Holian (1985) The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069. | ||
+ | |||
+ | == Links == | ||
+ | * [[Virtual laboratory]] | ||
+ | * [http://williamhoover.info/ William Hoover's Homepage] |
Текущая версия на 01:58, 15 декабря 2015
Содержание
Description of the model[править]
Nosé–Hoover thermostat is used to keep the temperature constant in the system. Equations of motion of the thermostated harmonic oscillator have the form:
where
- is the eigen frequency
- is the initial kinetic temperature of the system
- is the current kinetic temperature of the system
- is the velocity
- is the relaxation time
- - scale for
- - scale of stiffness for
Phase-space trajectory of thermostated harmonic oscillator[править]
The plot shows the trajectory of the thermostated harmonic oscillator in the phase-space. The equations of motion are solved numerically using leap-frog integration scheme. The followng three parameters can be changed by the user:
1) tau =
is the relaxation time2) stiff =
is the stiffness3) scale is a scale parameter for a plot
The last slider allows to choose the number of pre-configured experiment.
Authorship[править]
This stand has been developed by Nikolai Markov.
References[править]
- S. Nosé (1984). "A unified formulation of the constant temperature molecular-dynamics methods". J. Chem. Phys. 81 (1): 511–519.
- W.G. Hoover, (1985). "Canonical dynamics: Equilibrium phase-space distributions". Phys. Rev. A, 31 (3): 1695–1697.
- D.J. Evans, B.L. Holian (1985) The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069.