Сиситема груза и блоков — различия между версиями
Sizova (обсуждение | вклад) |
Sizova (обсуждение | вклад) (→Визуализация программы) |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 2: | Строка 2: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
== Решение == | == Решение == | ||
Строка 106: | Строка 101: | ||
<math> v = \left \{ \frac{2gh}{M_1+M_2+2M_3} \left \{ M_1+\frac{M_2}{2L}{2l+2r+h}- \frac{f_K}{r} \left [ M_3+ M_2(\frac{1}{2}-\frac{1}{2L}-\frac{\pi r}{4L} - \frac{h}{4L} \right ] \right \} \right \} ^{\frac{1}{2}} </math> | <math> v = \left \{ \frac{2gh}{M_1+M_2+2M_3} \left \{ M_1+\frac{M_2}{2L}{2l+2r+h}- \frac{f_K}{r} \left [ M_3+ M_2(\frac{1}{2}-\frac{1}{2L}-\frac{\pi r}{4L} - \frac{h}{4L} \right ] \right \} \right \} ^{\frac{1}{2}} </math> | ||
+ | |||
+ | == Визуализация программы == | ||
+ | {{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Sizova/dl_kp.html | справа |width=700|height=600 |border=0 }} | ||
+ | |||
+ | <div class="mw-collapsible mw-collapsed"> | ||
+ | '''Текст программы на языке JavaScript:''' <div class="mw-collapsible-content"> | ||
+ | Файл '''"dl_kp.js"''' | ||
+ | <syntaxhighlight lang="javascript" line start="1" enclose="div"> |
Текущая версия на 22:27, 9 июня 2015
Задача: С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
Решение[править]
Условия задачи:
Груз массы
подвешен на нерастяжимом однородном тросе длины , навитом на цилиндрический барабан с горизонтальной осью вращения. Момент инерции барабана относительно оси вращения , радиус барабана , масса единицы длины каната . Определить скорость груза в момент, когда длина свисающей части каната равна если в начальный момент скорость груза , а длина свисающей части каната была равна ; трением на оси барабана, толщиной троса и изменением потенциальной энергии троса, навитого на барабан, пренебречь.Решение: Воспользуемся теоремой об изменении кинетической энергии системы в дифференциальной форме:
Кинетическая энергия системы
В вычислениях учли отсутствие скольжения катка
(точка касания - мгновенный центр скоростей катка).Дифференциал кинетической энергии
Суммарная элементарная работа внутренних и внешних сил сводится в работе силы тяжести груза
:
работе силы тяжести каната:
и работе силы трения качения катка
:
В результате уравнение принимает вид
Для определения нормальной реакции катка Т(н) воспользуемся теоремой об изменении кинетического момента всей системы относительно оси вращения блока
:
Здесь масса горизонтального участка каната
масса участка каната, облегающего блок
,
масса вертикального участка каната
Центр масс горизонтального участка каната - точка
, причем
Центр масс каната, облегающего блок
- точка , такая, что
После преобразований получим:
Из полученного уравнения (2) выразим
:
где
Подставим
в уравнение (1):
Разделим левую и правую части на
и сократим все слагаемые на . Далее после несложных преобразований и умножения левой и правой частей на , получим:
Сокращаем на
, расписываем выражения , и , группируем члены. В результате получаем:
Так как
то разделяем переменные в дифференциальном уравнении и берем интеграл:
Из полученного выражения получаем величину скорости груза А при его опускании на высоту
Визуализация программы[править]
Файл "dl_kp.js"
<syntaxhighlight lang="javascript" line start="1" enclose="div">