Потенциал Кузькина-Кривцова — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
 
(не показаны 4 промежуточные версии 2 участников)
Строка 1: Строка 1:
 +
[[ТМ|Кафедра ТМ]] > [[Научный справочник]] > [[Потенциалы взаимодействия]] > [[Парные моментные потенциалы взаимодействия | Парные моментные]] > [[Потенциал Кузькина-Кривцова | Кузькина-Кривцова]]<HR>
 +
 
Парный моментный потенциал взаимодействия, предназначенный для описания механических свойств графена и других углеродных наноструктур, состоящих из атомов углерода в состоянии sp²
 
Парный моментный потенциал взаимодействия, предназначенный для описания механических свойств графена и других углеродных наноструктур, состоящих из атомов углерода в состоянии sp²
 
гибридизации. В качестве модели атома углерода используется точечное твердое тело. Параметры потенциала выбираются исходя из условия наилучшего соответствия результатов моделирования с известными экспериментальными данными. Также для определения параметров потенциала проводилось молекулярно-динамическое моделирование деформирования и разрушения графена, в ходе которого вычислялись макроскопические характеристики (модуль Юнга, коэффициент Пуассона, прочность, критическая деформация). Потенциал позволяет описать упругие и прочностные характеристики графена в пределах погрешности эксперимента.  
 
гибридизации. В качестве модели атома углерода используется точечное твердое тело. Параметры потенциала выбираются исходя из условия наилучшего соответствия результатов моделирования с известными экспериментальными данными. Также для определения параметров потенциала проводилось молекулярно-динамическое моделирование деформирования и разрушения графена, в ходе которого вычислялись макроскопические характеристики (модуль Юнга, коэффициент Пуассона, прочность, критическая деформация). Потенциал позволяет описать упругие и прочностные характеристики графена в пределах погрешности эксперимента.  
  
 
Публикация:  
 
Публикация:  
[[Виталий_Кузькин|В.А. Кузькин]], [[Антон_Кривцов|А.М. Кривцов]] "Описание механических свойств графена с использованием частиц с вращательными степенями свободы" // ДАН, 2011 (направлено в печать).
+
*[[Кузькин В.А.]], [[Кривцов А.М.]] '''Описание механических свойств графена с использованием частиц с вращательными степенями свободы''' // [http://www.maik.ru/cgi-perl/journal.pl?lang=rus&name=dan Доклады Академии Наук]. 2011, том 440, № 4, c. 476-479. (Скачать pdf: Рус. [[Медиа: Kuzkin_2011_DAN.pdf |188 Kb]], Eng. [[Медиа: Kuzkin_2011_DAN_eng.pdf|172 Kb]])  
  
Основные идеи построения данного потенциала изложенны
+
[[Потенциал Кузькина-Кривцова: принцип построения|Основные идеи построения данного потенциала изложены здесь]].
[[Потенциал Кузькина-Кривцова: принцип построения|здесь]].
 
  
 
== Ссылки ==
 
== Ссылки ==
Строка 12: Строка 13:
 
* [[Потенциалы взаимодействия]]
 
* [[Потенциалы взаимодействия]]
  
[[Category:Взаимодействия]]
+
 
 
[[Category: Потенциальные взаимодействия|Ку]]
 
[[Category: Потенциальные взаимодействия|Ку]]
 +
[[Category: Механика дискретных сред]]

Текущая версия на 14:37, 24 августа 2016

Кафедра ТМ > Научный справочник > Потенциалы взаимодействия > Парные моментные > Кузькина-Кривцова

Парный моментный потенциал взаимодействия, предназначенный для описания механических свойств графена и других углеродных наноструктур, состоящих из атомов углерода в состоянии sp² гибридизации. В качестве модели атома углерода используется точечное твердое тело. Параметры потенциала выбираются исходя из условия наилучшего соответствия результатов моделирования с известными экспериментальными данными. Также для определения параметров потенциала проводилось молекулярно-динамическое моделирование деформирования и разрушения графена, в ходе которого вычислялись макроскопические характеристики (модуль Юнга, коэффициент Пуассона, прочность, критическая деформация). Потенциал позволяет описать упругие и прочностные характеристики графена в пределах погрешности эксперимента.

Публикация:

Основные идеи построения данного потенциала изложены здесь.

Ссылки[править]