Continuum models of microstructure — различия между версиями
Wikiadmin (обсуждение | вклад) |
(→Lecture 2) |
||
(не показано 7 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
− | == | + | [[Кафедра ТМ]] > [[Кафедра ТМ#Учебная работа|Учебная работа]] > [[Курсы лекций]] > '''Continuum models of microstructure''' <HR> |
+ | {{DISPLAYTITLE:<span style="display:none">{{FULLPAGENAME}}</span>}} | ||
+ | |||
+ | <font size="5">Continuum models of microstructure</font> | ||
+ | <!--<StatisticYaGoog/>--> | ||
+ | == Preface == | ||
Advanced lecture course for PhD students of the [http://www.uni-magdeburg.de/en/international/content/Ombudsman.html Magdeburg University], January 2012. | Advanced lecture course for PhD students of the [http://www.uni-magdeburg.de/en/international/content/Ombudsman.html Magdeburg University], January 2012. | ||
Строка 13: | Строка 18: | ||
=== Lecture 2 === | === Lecture 2 === | ||
− | Modelling of continua with microstructure: equations of motion, strain measures and constitutive equations. Continua with inner rotational degrees of freedom. | + | Modelling of continua with microstructure: equations of motion, strain measures and constitutive equations. Continua with inner rotational degrees of freedom. |
=== Lecture 3 === | === Lecture 3 === | ||
Строка 32: | Строка 37: | ||
=== Lecture 8 === | === Lecture 8 === | ||
Application of the continuum model with microstructure (continua with inner rotational degrees of freedom) to description of quantum effects: possibilities to describe ferromagnetism, deduction of Schrödinger’s and Klein-Gordon equations. | Application of the continuum model with microstructure (continua with inner rotational degrees of freedom) to description of quantum effects: possibilities to describe ferromagnetism, deduction of Schrödinger’s and Klein-Gordon equations. | ||
+ | |||
+ | |||
+ | [[Category: Лекции]] |
Текущая версия на 22:38, 4 июля 2023
Кафедра ТМ > Учебная работа > Курсы лекций > Continuum models of microstructure
Continuum models of microstructure
Содержание
Preface[править]
Advanced lecture course for PhD students of the Magdeburg University, January 2012.
Full title: On the application of continuum models of the microstructure for description of non-mechanical processes on the macro-level.
Lecturer: Elena A. Ivanova.
Contents[править]
Lecture 1[править]
Mathematics necessary for description of continua with microstructure. Models of particles with complex structure as the base of modeling continua with microstructure.
Lecture 2[править]
Modelling of continua with microstructure: equations of motion, strain measures and constitutive equations. Continua with inner rotational degrees of freedom.
Lecture 3[править]
Application of continuum models with microstructure to description of processes of non-mechanical nature at the macro-level: historical remarks and state-of-the-art.
Lecture 4[править]
Application of the continuum model with microstructure (continua with inner rotational degrees of freedom) to description on the macro-level of heat conductivity and heat radiation processes.
Lecture 5[править]
Application of the continuum model with microstructure (continua with inner rotational degrees of freedom) to description on the macro-level of electro-magnetic processes: simplest theory leading to Maxwell’s equations.
Lecture 6[править]
Application of the continuum model with microstructure (continua with inner rotational degrees of freedom) to description on the macro-level of electro-magnetic processes: theory connecting electro-magnetic and heat processes.
Lecture 7[править]
Application of the continuum model with microstructure (continua with inner translation and rotational degrees of freedom) to description of piezoelectric effect. Specifics of the description of the piezoelectric effect in polar and non-polar piezoelectric continua.
Lecture 8[править]
Application of the continuum model with microstructure (continua with inner rotational degrees of freedom) to description of quantum effects: possibilities to describe ferromagnetism, deduction of Schrödinger’s and Klein-Gordon equations.