|
|
(не показано 29 промежуточных версий 6 участников) |
Строка 1: |
Строка 1: |
− | '''Предмет:''' "Теоретическая механика"
| + | #REDIRECT [[Курсовые_работы_по_ТОМДЧ:_2011-2012]] |
− | | |
− | '''Лектор:''' [[Кузькин Виталий Андреевич]]
| |
− | | |
− | '''Группа:''' 50510
| |
− | | |
− | '''Семестр:''' весна 2012
| |
− | | |
− | == Моделирование падения столба жидкости методом гидродинамики сглаженных частиц (SPH) и молекулярной динамики (MD) ==
| |
− | | |
− | '''Исполнители''': Ольга Бразгина (SPH), Мурачев Андрей(SPH), Павлов Павел (MD), Посысаев Сергей (MD)
| |
− | | |
− | ''' Гидродинамика сглаженных частиц '''
| |
− | | |
− | Гидродинамика сглаженных частиц (англ. Smoothed Particle Hydrodynamics, SPH) — вычислительный метод для симуляции жидкостей и газов. Метод гидродинамики сглаженных частиц является не-сеточным лагранжевым методом (то есть координаты движутся вместе с жидкостью), и разрешающая способность метода может быть легко отрегулирована относительно переменных, таких как плотность.
| |
− | | |
− | Эти частицы имеют пространственное расстояние, на котором их свойства «сглаживаются» функцией ядра. Это значит, что любая физическая величина любой частицы может быть получена путем суммирования соответствующих величин всех частиц которые находятся в пределах двух сглаженных длин.
| |
− | | |
− | Влияние каждой частицы на свойства оценивается в соответствии с её плотностью и расстоянием до интересующей частицы. Математически, это описывается функцией ядра (обозначается <math>\mathbf{W}</math>). В качестве функции ядра часто используют функцию Гаусса (функция нормального распределения) или кубический сплайн.
| |
− | | |
− | Значение любой физической величины <math>A</math> в точке <math>\mathbf{r}</math>, задаётся формулой:
| |
− | | |
− | <math>A(\mathbf{r}) = \sum_j m_j \frac{A_j}{\rho_j} W(| \mathbf{r}-\mathbf{r}_{j} |),</math>, суммироание идёт в приделах двух сглаженных длин.
| |
− | | |
− | Гидродинамика сглаженных частиц всё более часто используется для моделирования движения жидкостей. Это происходит из-за некоторых преимуществ метода SPH по сравнению с традиционными основанными на сетке методиками. Во-первых, SPH гарантирует сохранение массы без дополнительных вычислений, так как частицы сами по себе представляют массу. Во-вторых, SPH вычисляет давление от воздействия соседних частиц, также имеющих массу, а не решает систему линейных уравнений. Наконец, в отличие от основанных на сетке методик, которые должны прослеживать границы жидкости, SPH создаёт свободную поверхность для непосредственно двухфазных взаимодействующих жидкостей, так как частицы представляют более плотную жидкость (обычно воду), а свободное пространство представляет более лёгкую жидкость (обычно воздух). По этим причинам благодаря SPH возможно моделировать движение жидкости в режиме реального времени.
| |
− | | |
− | ''' Метод классической молекулярной динамики '''
| |
− | | |
− | Основные положения:
| |
− | * Для описания движения атомов или частиц применяется классическая механика. Закон движения частиц находят при помощи аналитической механики.
| |
− | | |
− | | |
− | [[Файл:800px-12-6-Lennard-Jones-Potential.svg.png|400px|thumb|right|Вид потенциала Леннарда-Джонса]]
| |
− | * Силы межатомного взаимодействия можно представить в форме классических потенциальных сил (как градиент потенциальной энергии системы).
| |
− |
| |
− | * Точное знание траекторий движения частиц системы на больших промежутках времени не является необходимым для получения результатов макроскопического термодинамического характера.
| |
− | | |
− | * Наборы конфигураций, получаемые в ходе расчетов методом молекулярной динамики, распределены в соответствии с некоторой статистической функцией распределения, например отвечающей микроканоническому распределению.
| |
− | | |
− | | |
− | Метод молекулярной динамики применим, если длина волны Де Бройля атома (или частицы) много меньше, чем межатомное расстояние.
| |
− | Также классическая молекулярная динамика не применима для моделирования систем, состоящих из легких атомов, таких как гелий или водород. Кроме того, при низких температурах квантовые эффекты становятся определяющими и для рассмотрения таких систем необходимо использовать квантовохимические методы. Необходимо, чтобы времена на которых рассматривается поведение системы были больше, чем время релаксации исследуемых физических величин.
| |
− | | |
− | Потенциал взаимодействия между частицами моделируется потенциалом Леннард-Джонса.
| |
− | Это простая модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними. Эта модель достаточно реалистично передаёт свойства реального взаимодействия сферических неполярных молекул и поэтому широко используется в расчётах и при компьютерном моделировании. Впервые этот вид потенциала был предложен Леннард-Джонсом в 1924 году.
| |
− | [[Файл:All.jpg|400px|thumb|right|Результаты моделирования методом динамики частиц (сверху) и методом сглаженных частиц(cнизу)]]
| |
− | :<math>
| |
− | U(r) = 4\varepsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right],
| |
− | </math>
| |
− | где <math>r</math> — расстояние между центрами частиц, <math>\varepsilon</math> — глубина потенциальной ямы, <math>\sigma</math> — расстояние, на котором энергия взаимодействия становится равной нулю. Параметры <math>\varepsilon</math> и <math>\sigma</math> являются характеристиками атомов соответствующего вещества. Характерный вид потенциала показан на рисунке, его минимум лежит в точке <math>r_{min} = \sigma \sqrt[6]{2}</math>.
| |
− | | |
− | | |
− | | |
− | | |
− | Сравнивая результаты моделирования методами SPH и с помощью потенциала Леннарда-Джонса, можно отметить следующие различия:
| |
− | | |
− | 1. При равных условиях моделирования метод динамики частиц требует большей гравитационной силы, что связано с большими силами отталкивания.
| |
− | | |
− | 2. По этой же причине частицы при отражении от стены сильнее отталкиваются и разлетаются.
| |
− | | |
− | 3. При уравновешивании системы методом динамики частиц образуется устойчивая ГЦК-структура, при моделировании SPH структура не настолько упорядочена.
| |
− | | |
− | == Моделирование пластического деформирования твердого тела под действием гравитации методом молекулярной динамики (MD) ==
| |
− | | |
− | '''Исполнители''': [http://tm.spbstu.ru/%D0%9F%D0%BB%D0%B5%D1%88%D0%B0%D0%BA%D0%BE%D0%B2_%D0%9D%D0%B8%D0%BA%D0%B8%D1%82%D0%B0]
| |
− | | |
− | ----
| |
− | [[Файл:F.gif|thumb|]]
| |
− | С помощью [http://http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B9_%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%BE%D0%B9_%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B8/ метода молекулярной динамики] построена модель взаимодействия частиц. Численное интегрирование осуществлялось методом Эйлера. Для описания взаимодействия между частицами использовался потенциал Леннард-Джонса. Вязкое трение между частицами вводится посредством коэффициента при разности скоростей пары взаимодействующих частиц. Так же на каждую частицу действует массовая сила заданной величины(аналог гравитационных сил). Показателем адекватности модели являются графические результаты, которые имеют сходство с данными наблюдаемыми в эксперименте.
| |
− | | |
− | Далее представлены результаты моделирования для двух задач:
| |
− | [[Файл:Mat_flow.gif|thumb|]]
| |
− | | |
− | а) Пластическое течение столба вязкого материала в кубическом сосуде
| |
− | | |
− | Данный опыт демонстрирует вязко-пластические свойства описываемого материала. Можно наблюдать как материал с течением времени пластически деформируется и принимает форму сосуда, что соответствует реальному поведению вязко-пластических материалов.
| |
− | Исследуемое число частиц - 1728
| |
− | | |
− | | |
− | б) Обтекание препятствия(полосы) вязко-пластическим материалом
| |
− | В качестве приложения рассмотрена задача обтекания препятствия. На представленной анимации наблюдается наблюдается как сдвиг пласта материала, так и расширение стенки в направлении перпендикулярном вектору массовых сил, что так же можно наблюдать в реальных экспериментах.
| |
− | Исследуемое число частиц - 1944
| |
− | | |
− | == Ссылки ==
| |
− | * [[Теоретические основы метода динамики частиц]]
| |
− | * [[Кафедра "Теоретическая механика"]]
| |
− | | |
− | [[Category: Студенческие проекты]]
| |