Краморов Данил. Курсовой проект по теоретической механике — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Расчет коэффициента)
(Итог)
 
(не показано 97 промежуточных версий 4 участников)
Строка 6: Строка 6:
  
 
==== Параметры системы: ====
 
==== Параметры системы: ====
<math> d = 4*10^{-2}</math>м (диаметр потока)<br>
+
<math> d = 4*10^{-2}</math> м (диаметр потока)<br>
<math> \rho = 0.125 </math>кг/м^3 (массовая плотность воздуха)<br>
+
<math> \rho = 0.125 </math> кг/м^3 (массовая плотность воздуха)<br>
<math> A = 12,56*10{-4} </math> м^2 (площадь поперечного сечения шара)<br>
+
<math> A = 12.56*10^{-4} </math> м^2 (площадь поперечного сечения шара)<br>
<math> Cl = 0.5 </math> (коэффициент подъемной силы)<br>
+
<math> C_l = 0.5 </math> (коэффициент подъемной силы)<br>
<math> \upsilon = 5.6 </math> м/с(максимальная скорость потока, расчет приведен)<br>
+
<math> \upsilon = 5.6 </math> м/с (максимальная скорость потока, расчет приведен)<br>
 +
<math> C_d = 0.5 </math> (коэффициент сопротивления)<br>
  
 
== Решение ==
 
== Решение ==
Рассмотрим горизонтальную составляющую второго закона Ньютона для данного тела. В этом направление на шарик действуют только подъемная сила (объясняемая [http://ru.wikipedia.org/wiki/%DD%F4%F4%E5%EA%F2_%CC%E0%E3%ED%F3%F1%E0| эффектом Магнуса]). В этой системе она играет роль силы [http://ru.wikipedia.org/wiki/%D0%90%D1%8D%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 аэродинамического сопротивления].
+
[[Файл:Skor.jpg|thumb|300px| График скорости(v(t))]]
 +
Рассмотрим горизонтальную составляющую второго закона Ньютона для данного тела. В этом направление на шарик действуют подъемная сила (объясняемая [http://ru.wikipedia.org/wiki/%DD%F4%F4%E5%EA%F2_%CC%E0%E3%ED%F3%F1%E0| эффектом Магнуса]) и сила аэродинамического сопротивления.
  
<math>m \ddot x = \frac{1} {2} \rho \upsilon^2 ACl;</math><br>
+
<math>m \ddot x = \frac{1} {2} \rho \upsilon^2 AC_l- C_d A\frac{\rho {\dot x}^2}{2};</math><br>
  
[[Файл:Norm.png|thumb|400px|right| Распределение Гаусса]]
+
[[Файл:dvig.jpg|thumb|300px| График движения(x(t))]]
  
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке.  Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет повторять функцию распределения вероятностей ([http://ru.wikipedia.org/wiki/%CD%EE%F0%EC%E0%EB%FC%ED%EE%E5_%F0%E0%F1%EF%F0%E5%E4%E5%EB%E5%ED%E8%E5 распределение Гаусса]). Функция плотности распределения имеет вид:
+
Шарик не является точечным делом, поэтому на границы шарика действуют два разных по значению подъемные силы. Они будут противоположны по знаку. Следовательно уравнение движения будет иметь вид:
 +
 
 +
<math>m \ddot x = \frac{1} {2} \rho ({\upsilon_1}^2-{\upsilon_2}^2) AC_l - C_d A\frac{\rho {\dot x}^2}{2};</math><br>
 +
 
 +
 
 +
Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке.  Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет представлять из себя параболу.<br>
 
<br>
 
<br>
<br>
+
Получаем зависимость от местоположения в потоке.<br>
<math>f(x)= \frac{1} {\sigma \sqrt{2\pi}} e^{-\frac{(x- \mu)^2} {\sigma^2}}</math><br>
 
<br>
 
<math> \mu</math> - коэффициент сдвига (вещественное число)<br>
 
<math> \sigma</math> - коэффициент масштаба (вещественный, строго положительный)<br>
 
<br>
 
 
 
Представляя данную функцию функцией скорости, получаем зависимость от местоположения в потоке.<br>
 
<math> \mu</math> = d/2, <math> \sigma</math> = d/6, где d - диаметр потока.<br>
 
  
<math> \upsilon(x)= \frac{1} {\frac{d} {6} \sqrt{2\pi}} e^{-\frac{(x- \frac{d} {2})^2} {({\frac{d} {6}})^2}}</math><br>
+
<math> \upsilon(x)= - \sqrt {\frac{g} {d^3}} x^2 + \upsilon_{max}</math><br>
<math> \upsilon(x)= \frac{6} {d \sqrt{2\pi}} e^{-\frac{9(2x- d)^2} {d^2}}</math><br>
 
  
Для плотности распределения максимальным значением будет 1. Для скорости же оно будет иным. В связи с этим следует найти коэффициент, на который нужно домножить функцию, чтобы получить точное значение.
+
Теперь следует найти максимальную скорость потока.
  
==== Расчет коэффициента ====
+
==== Расчет максимальной скорости ====
Для начала следует найти скорость потока в центре (максимальную скорость).
+
[[Файл:Usk.jpg|thumb|300px| График ускорения(w(t))]]
  
 
<math> q = \frac {\rho \upsilon^2*10} {2} </math><br>
 
<math> q = \frac {\rho \upsilon^2*10} {2} </math><br>
<math> q = \frac {F} {S} = \frac {mg} {S} </math><br>
+
<math> q = \frac {F} {S} = \frac {mg} {A} </math><br>
<math> \frac {\rho \upsilon^2*10} {2} = \frac {mg} {S} </math><br>
+
<math> \frac {\rho \upsilon^2*10} {2} = \frac {mg} {A} </math><br>
<math> \upsilon = \frac {mg} {5 \rho S} </math><br>
+
<math> \upsilon = \sqrt {\frac {mg} {5 \rho A}} </math><br>
<math> \upsilon = 5,6 </math> м/c <br>
 
  
Теперь находим коэффициент z.
+
Общая формула для скорости будет иметь вид:
  
<math> 5,6 = \frac {6*z} {d \sqrt{2\pi}} </math><br>
+
<math> \upsilon(x)= -\sqrt {\frac{g} {d^3}} x^2 + \sqrt {\frac {mg} {5 \rho A}}</math><br>
<math> z = \frac {5,6 d \sqrt{2\pi}} {6} </math><br>
 
<math> z = 0,1 </math><br>
 
  
 
==== Итог ====
 
==== Итог ====
Общая формула будет иметь вид:<br>
+
 
<br>
+
<math> x = x_1+r </math><br>
<math>m \ddot x = \frac{k} {\pi d^2} e^{-\frac{(2x- d)^2} {d^2}};</math><br>
+
<math> x = x_2-r </math><br>
<br>
+
Общая формула при малых х будет иметь вид:<br>
где <math> k = 7*10^{-5} </math>;
+
<math>m \ddot x = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]x - C_d A\frac{\rho {\dot x}^3}{2d}-\frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right];</math><br>
 +
 
 +
<math>m\ddot x = D{\dot x}^3 + Bx + L</math>;
 +
 
 +
<math>B = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]</math>;
 +
 
 +
<math>D = - C_d A\frac{\rho}{2d}</math>;
 +
 
 +
<math>L = \frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]</math>;
  
 
Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.
 
Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.
Строка 63: Строка 66:
 
Аналитический расчет подтвердил экспериментальную оценку. Окончательное уравнение показало, что тело в вертикальном воздушном потоке совершает затухающие колебания. Также можно отметить, что колебания оказались очень малы. Шарик практически моментально стабилизируется в потоке. Что касается вертикальных колебаний, то они зависят от перепадов напряжения в сети и носят довольно случайный характер. Посредством пакета matlab были построены графики скорости, ускорения и движения тела в потоке.
 
Аналитический расчет подтвердил экспериментальную оценку. Окончательное уравнение показало, что тело в вертикальном воздушном потоке совершает затухающие колебания. Также можно отметить, что колебания оказались очень малы. Шарик практически моментально стабилизируется в потоке. Что касается вертикальных колебаний, то они зависят от перепадов напряжения в сети и носят довольно случайный характер. Посредством пакета matlab были построены графики скорости, ускорения и движения тела в потоке.
  
== Ссылки по теме ==  
+
== Ссылки по теме ==
 +
[http://ru.wikipedia.org/wiki/%C7%E0%EA%EE%ED_%C1%E5%F0%ED%F3%EB%EB%E8| Закон Бернулли]<br>
 +
[http://ru.wikipedia.org/wiki/%DD%F4%F4%E5%EA%F2_%CC%E0%E3%ED%F3%F1%E0| Эффект Магнуса]<br>
  
 
== См. также ==
 
== См. также ==

Текущая версия на 15:06, 26 июня 2012

Тема проекта[править]

Колебания шарика в вертикальном воздушном потоке

Постановка задачи[править]

Тело - в данном эксперименте шарик для настольного тенниса - помещается на край вертикального воздушного потока (создается феном). Подчиняясь закону Бернулли, шарик будет пытаться стабилизироваться в центре потока, совершая колебания. Требуется найти уравнение колебаний шарика. Рассматриваются только горизонтальные колебания внутри потока.

Параметры системы:[править]

[math] d = 4*10^{-2}[/math] м (диаметр потока)
[math] \rho = 0.125 [/math] кг/м^3 (массовая плотность воздуха)
[math] A = 12.56*10^{-4} [/math] м^2 (площадь поперечного сечения шара)
[math] C_l = 0.5 [/math] (коэффициент подъемной силы)
[math] \upsilon = 5.6 [/math] м/с (максимальная скорость потока, расчет приведен)
[math] C_d = 0.5 [/math] (коэффициент сопротивления)

Решение[править]

График скорости(v(t))

Рассмотрим горизонтальную составляющую второго закона Ньютона для данного тела. В этом направление на шарик действуют подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.

[math]m \ddot x = \frac{1} {2} \rho \upsilon^2 AC_l- C_d A\frac{\rho {\dot x}^2}{2};[/math]

График движения(x(t))

Шарик не является точечным делом, поэтому на границы шарика действуют два разных по значению подъемные силы. Они будут противоположны по знаку. Следовательно уравнение движения будет иметь вид:

[math]m \ddot x = \frac{1} {2} \rho ({\upsilon_1}^2-{\upsilon_2}^2) AC_l - C_d A\frac{\rho {\dot x}^2}{2};[/math]


Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет представлять из себя параболу.

Получаем зависимость от местоположения в потоке.

[math] \upsilon(x)= - \sqrt {\frac{g} {d^3}} x^2 + \upsilon_{max}[/math]

Теперь следует найти максимальную скорость потока.

Расчет максимальной скорости[править]

График ускорения(w(t))

[math] q = \frac {\rho \upsilon^2*10} {2} [/math]
[math] q = \frac {F} {S} = \frac {mg} {A} [/math]
[math] \frac {\rho \upsilon^2*10} {2} = \frac {mg} {A} [/math]
[math] \upsilon = \sqrt {\frac {mg} {5 \rho A}} [/math]

Общая формула для скорости будет иметь вид:

[math] \upsilon(x)= -\sqrt {\frac{g} {d^3}} x^2 + \sqrt {\frac {mg} {5 \rho A}}[/math]

Итог[править]

[math] x = x_1+r [/math]
[math] x = x_2-r [/math]
Общая формула при малых х будет иметь вид:
[math]m \ddot x = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]x - C_d A\frac{\rho {\dot x}^3}{2d}-\frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right];[/math]

[math]m\ddot x = D{\dot x}^3 + Bx + L[/math];

[math]B = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right][/math];

[math]D = - C_d A\frac{\rho}{2d}[/math];

[math]L = \frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right][/math];

Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.

Обсуждение результатов и выводы[править]

Аналитический расчет подтвердил экспериментальную оценку. Окончательное уравнение показало, что тело в вертикальном воздушном потоке совершает затухающие колебания. Также можно отметить, что колебания оказались очень малы. Шарик практически моментально стабилизируется в потоке. Что касается вертикальных колебаний, то они зависят от перепадов напряжения в сети и носят довольно случайный характер. Посредством пакета matlab были построены графики скорости, ускорения и движения тела в потоке.

Ссылки по теме[править]

Закон Бернулли
Эффект Магнуса

См. также[править]