Моделирование поведения цепочки — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Математическая модель) |
(→Математическая модель) |
||
Строка 32: | Строка 32: | ||
<math> | <math> | ||
− | m\underline{\ddot{r}}_i(t)= | + | m\underline{\ddot{r}}_i(t)= c(||\underline{r}_{i+1}-\underline{r}_i|| - 1)\frac{(\underline{r}_{i+1}-\underline{r}_i)}{||\underline{r}_{i+1}-\underline{r}_i||} + c(||\underline{r}_{i-1}-\underline{r}_i|| - 1)\frac{(\underline{r}_{i-1}-\underline{r}_i)}{||\underline{r}_{i-1}-\underline{r}_i||} - mg\underline{k}\\ |
</math> | </math> |
Версия 21:24, 24 января 2023
Курсовой проект по Механике дискретных сред
Исполнитель: Садовченко Екатерина
Группа: 5030103/90101
Семестр: осень 2022
Постановка задачи
В рамках проекта необходимо смоделировать движение двумерной цепочки: провис цепочки и ее падение при отпускании одного из концов под действием силы тяжести.
Математическая модель
Изначально запишем закон движения:
где
- силы упругости действующие на -ую частицу со стороны и соответственно, а - сила тяжести.Далее распишем силу упругости как произведение модуля на соответсвующий орт:
, где - коэффициент жесткости пружины. Аналогично записывается сила .Далее подставляя все силы в уравнение движения, получим: