Моделирование поведения цепочки — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Математическая модель) |
(→Математическая модель) |
||
Строка 22: | Строка 22: | ||
\underline{F}_{i-1}, \underline{F}_{i+1}\\ | \underline{F}_{i-1}, \underline{F}_{i+1}\\ | ||
</math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно, а <math> \underline{F}_{g}=-mg\underline{k} \\ </math> - сила тяжести. | </math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно, а <math> \underline{F}_{g}=-mg\underline{k} \\ </math> - сила тяжести. | ||
+ | Далее распишем силу упругости как произведение модуля на соответсвующий орт: | ||
+ | <math> | ||
+ | \underline{F}_{i+1}= c(|\underline{r}_{i+1}-\underline{r}_{i}| - l_0)\frac{(\underline{r}_{i+1}-\underline{r}_{i})}{|\underline{r}_{i+1}-\underline{r}_{i}|} | ||
+ | </math>, где <math>c</math> - коэффициент жесткости пружины. |
Версия 21:15, 24 января 2023
Курсовой проект по Механике дискретных сред
Исполнитель: Садовченко Екатерина
Группа: 5030103/90101
Семестр: осень 2022
Постановка задачи
В рамках проекта необходимо смоделировать движение двумерной цепочки: провис цепочки и ее падение при отпускании одного из концов под действием силы тяжести.
Математическая модель
Изначально запишем закон движения:
где
- силы упругости действующие на -ую частицу со стороны и соответственно, а - сила тяжести. Далее распишем силу упругости как произведение модуля на соответсвующий орт: , где - коэффициент жесткости пружины.