Моделирование удара шарика об стенку — различия между версиями
(→Результаты моделирования) |
(→Математическая модель) |
||
Строка 60: | Строка 60: | ||
\underline{F}_{Wall}=-\nabla \Pi(r) | \underline{F}_{Wall}=-\nabla \Pi(r) | ||
</math>, где <math>\Pi(r)=4\varepsilon[(\frac{a}{r})^{12}-(\frac{a}{r})^6]</math> | </math>, где <math>\Pi(r)=4\varepsilon[(\frac{a}{r})^{12}-(\frac{a}{r})^6]</math> | ||
+ | |||
+ | Интегрирование уравнений движения осуществляется при помощи метода Верле. | ||
==Результаты моделирования== | ==Результаты моделирования== | ||
[[File:modeling2_ball_dm.gif]] | [[File:modeling2_ball_dm.gif]] |
Версия 00:57, 16 декабря 2021
Курсовой проект по Механике дискретных сред
Исполнитель: Пашковский Дмитрий
Группа: 5030103/80101
Семестр: осень 2021
Постановка задачи
Требуется смоделировать удар воздушного шарика о твердую стенку в двумерной постановке. Воздушный шарик представляет из себя оболочку, состоящую из материальный точек, каждая из которых соединена пружиной. Отскакивание воздушного шара от стенки моделируется при помощи потенциала Ленарда-Джонса.
Математическая модель
Уравнение движение для каждой из материальных точек записывается следующим образом:
где
- силы упругости действующие на -ую частицу со стороны и соответственно;
- силы демпфирования пружины действующие на -ую частицу со стороны и соответственно;
- давление создаваемое газом;
- сила взаимодействия между воздушным шаром и стеной;
Сила упругости, возникающая в пружине соединяющей частицу 1 и 2, вычисляется по следующей формуле:
, где - коэффициент жесткости пружины.
Сила демпфирования:
, где - коэффициент демпфирования пружины.
Давление:
, где - актуальный объем шара, - актуальная длина пружина, - модуль давления, - нормаль к пружине, направленная наружу.
Взаимодействие шара со стеной:
, где
Интегрирование уравнений движения осуществляется при помощи метода Верле.