Сергей Гаврилов — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(affiliation)
(Основные публикации)
 
(не показано 25 промежуточных версий 3 участников)
Строка 1: Строка 1:
 
== Научные интересы ==
 
== Научные интересы ==
Рациональная механика, нестационарные волны, подвижные нагрузки, локализация волн, асимптотика, конфигурационные силы, фазовые превращения, реология.
+
Рациональная механика, нестационарные волны, подвижные нагрузки, локализация волн, асимптотика, конфигурационные силы, фазовые превращения, реология, баллистическое распространение тепла.
  
 
== Место работы ==
 
== Место работы ==
 
* [http://www.ipme.ru Институт проблем машиноведения РАН], лаб. математического моделирования волновых процессов, ведущий научный сотрудник.
 
* [http://www.ipme.ru Институт проблем машиноведения РАН], лаб. математического моделирования волновых процессов, ведущий научный сотрудник.
* [http://spbstu.ru Санкт-Петербургский политехнический университет Петра Великого], [http://tm.spbstu.ru кафедра "Теоретическая механика"], доцент
+
* [http://spbstu.ru Санкт-Петербургский политехнический университет Петра Великого], [http://tm.spbstu.ru кафедра "Теоретическая механика"], профессор
 +
 
 +
== Образование ==
 +
* д.ф.-м.н., 2013, [http://www.ipme.ru ИПМаш РАН], "Нестационарная динамика упругих тел с подвижными включениями и границами".
 +
* к.ф.-м.н., 1999, [http://www.ipme.ru ИПМаш РАН], "Нестационарные процессы в упругих волноводах при преодолении критической скорости подвижной нагрузкой", научные руководители Д.А. Индейцев, П.А. Жилин.
 +
* магистр т.н., 1996, каф. "Механика и процессы управления" СПбГПУ, "Математическая модель среды Кельвина", научный руководитель П.А. Жилин.
 +
 
 +
== Преподавание ==
 +
* Курс "Нестационарные упругие волны" для студентов кафедры [http://tm.spbstu.ru/ "Теоретическая Механика"].
 +
* слайды (1ый семестр) [http://www.pdmi.ras.ru/~serge/lectures/2018-1.pdf]
 +
* слайды (2ой семестр) [http://www.pdmi.ras.ru/~serge/lectures/2018-2.pdf]
  
 
== Основные публикации ==
 
== Основные публикации ==
 
+
# [https://arxiv.org/abs/1907.00067 E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Passage through resonance for a system with time-varying parameters possessing a single trapped mode. ArXiv:1907.00067.]
# [http://rdcu.be/o5Ya E.V. Shishkina, S.N. Gavrilov. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. (2017) DOI: 10.1007/s00419-017-1228-y.]  
+
# [https://doi.org/10.1103/PhysRevE.100.022117 S.N. Gavrilov, A.M. Krivtsov. Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E, 100, 022117, 2019. DOI: 10.1103/PhysRevE.100.022117.]
 +
# [https://rdcu.be/bKNun M. Ferretti, S.N. Gavrilov, V.A. Eremeyev, A. Luongo. Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass. Nonlinear Dynamics, 2019. DOI: 10.1007/s11071-019-05117-z.]
 +
# [https://rdcu.be/bBc6J S.N. Gavrilov, A.M. Krivtsov. Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Continuum Mechanics and Thermodynamics. DOI: 10.1007/s00161-019-00782-2.]
 +
# [https://link.springer.com/chapter/10.1007/978-3-030-11665-1_13 S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. An infinite-length system possessing a unique trapped mode versus a single degree of freedom system: a comparative study in the case of time-varying parameters. In book: Editors: Altenbach H. et al. Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials 103,pp.231-251, Springer, 2019. DOI: 10.1007/978-3-030-11665-1_13.]
 +
# [https://doi.org/10.1007%2Fs11071-018-04735-3 S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. Nonlinear Dynamics. 95(4), pp. 2995–3004, DOI: 10.1007/s11071-018-04735-3]
 +
# [https://doi.org/10.1016/j.jsv.2018.10.016 E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness. Journal of Sound and Vibration 440C (2019) pp. 174-185. DOI: 10.1016/j.jsv.2018.10.016]
 +
# [https://rdcu.be/OMSZ S.N. Gavrilov, A.M. Krivtsov, D.V. Tsvetkov. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mechanics and Termodynamics (2019), 31(1), pp. 255-272. DOI: 10.1007/s00161-018-0681-3.]
 +
#  [http://ieeexplore.ieee.org/document/8168010/ S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a string on the Winkler foundation with point inhomogeneity. Proc.Int. Conf. DAYS on DIFFRACTION 2017, pp. 128–133. DOI: 10.1109/DD.2017.8168010].
 +
# [http://rdcu.be/o5Ya E.V. Shishkina, S.N. Gavrilov. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. (2017) 87(6): pp. 1019-1036. DOI: 10.1007/s00419-017-1228-y.]
 
# [http://link.springer.com/article/10.1134%2FS1028335816120065 D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics (2016) 61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.]  
 
# [http://link.springer.com/article/10.1134%2FS1028335816120065 D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics (2016) 61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.]  
 
# [http://ieeexplore.ieee.org/document/7756834/ S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc. Int. Conf. DAYS on DIFFRACTION 2016, pp. 161–165. DOI: 10.1109/DD.2016.7756834.]
 
# [http://ieeexplore.ieee.org/document/7756834/ S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc. Int. Conf. DAYS on DIFFRACTION 2016, pp. 161–165. DOI: 10.1109/DD.2016.7756834.]

Текущая версия на 12:57, 15 августа 2019

Научные интересы[править]

Рациональная механика, нестационарные волны, подвижные нагрузки, локализация волн, асимптотика, конфигурационные силы, фазовые превращения, реология, баллистическое распространение тепла.

Место работы[править]

Образование[править]

  • д.ф.-м.н., 2013, ИПМаш РАН, "Нестационарная динамика упругих тел с подвижными включениями и границами".
  • к.ф.-м.н., 1999, ИПМаш РАН, "Нестационарные процессы в упругих волноводах при преодолении критической скорости подвижной нагрузкой", научные руководители Д.А. Индейцев, П.А. Жилин.
  • магистр т.н., 1996, каф. "Механика и процессы управления" СПбГПУ, "Математическая модель среды Кельвина", научный руководитель П.А. Жилин.

Преподавание[править]

Основные публикации[править]

  1. E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Passage through resonance for a system with time-varying parameters possessing a single trapped mode. ArXiv:1907.00067.
  2. S.N. Gavrilov, A.M. Krivtsov. Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E, 100, 022117, 2019. DOI: 10.1103/PhysRevE.100.022117.
  3. M. Ferretti, S.N. Gavrilov, V.A. Eremeyev, A. Luongo. Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass. Nonlinear Dynamics, 2019. DOI: 10.1007/s11071-019-05117-z.
  4. S.N. Gavrilov, A.M. Krivtsov. Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Continuum Mechanics and Thermodynamics. DOI: 10.1007/s00161-019-00782-2.
  5. S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. An infinite-length system possessing a unique trapped mode versus a single degree of freedom system: a comparative study in the case of time-varying parameters. In book: Editors: Altenbach H. et al. Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials 103,pp.231-251, Springer, 2019. DOI: 10.1007/978-3-030-11665-1_13.
  6. S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. Nonlinear Dynamics. 95(4), pp. 2995–3004, DOI: 10.1007/s11071-018-04735-3
  7. E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness. Journal of Sound and Vibration 440C (2019) pp. 174-185. DOI: 10.1016/j.jsv.2018.10.016
  8. S.N. Gavrilov, A.M. Krivtsov, D.V. Tsvetkov. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mechanics and Termodynamics (2019), 31(1), pp. 255-272. DOI: 10.1007/s00161-018-0681-3.
  9. S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a string on the Winkler foundation with point inhomogeneity. Proc.Int. Conf. DAYS on DIFFRACTION 2017, pp. 128–133. DOI: 10.1109/DD.2017.8168010.
  10. E.V. Shishkina, S.N. Gavrilov. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. (2017) 87(6): pp. 1019-1036. DOI: 10.1007/s00419-017-1228-y.
  11. D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics (2016) 61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.
  12. S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc. Int. Conf. DAYS on DIFFRACTION 2016, pp. 161–165. DOI: 10.1109/DD.2016.7756834.
  13. S.N. Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dynamics (2016) 86(4): 2245-2260
  14. S.N. Gavrilov, E.V. Shishkina. Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp. 96–101. DOI: 10.1109/DD.2015.7354840.
  15. E.V. Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151 .
  16. S.N. Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM (2015) 95(12): 1521–1529.
  17. S.N. Gavrilov, E.V. Shishkina. New phase nucleation due to the collision of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581.
  18. S.N. Gavrilov, G.C. Herman. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, (2012), 331(20): 4464-4480.
  19. S.N. Gavrilov, E.V. Shishkina. On stretching of a bar capable of undergoing phase transitions. Continuum Mechanics and Thermodynamics (2010), 22(4), 299-316.
  20. E.V. Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application of the method of direct separation of motions to the parametric stabilization of an elastic wire. Nonlinear Dynamics (2008) 54: 313-331.
  21. S. N. Gavrilov. Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM (2007) 87(2):117-127.
  22. S. N. Gavrilov. Proper dynamics of phase interface in an infinite elastic bar with variable cross section. Doklady Physics (2007) 52(3):161-164.
  23. S.N. Gavrilov. The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70: 582-589.
  24. S.N. Gavrilov, G.C. Herman. Oscillation of a punch moving on the free surface of an elastic half space. Journal of Elasticity (2004) 75: 247-265.
  25. S.N. Gavrilov, D.A. Indeitsev. On the evolution of localized mode of oscillation in system "string on an elastic foundation - moving inertial inclusion". PMM J. Appl. Math. Mechs (2002) 66(5):825-833.
  26. S. Gavrilov. Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mechanica (2002) 154:47-60.
  27. S. Gavrilov. Transition through the critical velocity for a moving load in an elastic waveguide. Technical Physics (2000) 45(4):515-518.
  28. S. Gavrilov. Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. Journal of Sound and Vibration (1999) 222(3):345-361.