Сергей Гаврилов — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Serge (обсуждение | вклад) (Основные публикации) |
Serge (обсуждение | вклад) (→Основные публикации) |
||
(не показано 29 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
+ | == Научные интересы == | ||
+ | Рациональная механика, нестационарные волны, подвижные нагрузки, локализация волн, асимптотика, конфигурационные силы, фазовые превращения, реология, баллистическое распространение тепла. | ||
+ | |||
+ | == Место работы == | ||
+ | * [http://www.ipme.ru Институт проблем машиноведения РАН], лаб. математического моделирования волновых процессов, ведущий научный сотрудник. | ||
+ | * [http://spbstu.ru Санкт-Петербургский политехнический университет Петра Великого], [http://tm.spbstu.ru кафедра "Теоретическая механика"], профессор | ||
+ | |||
+ | == Образование == | ||
+ | * д.ф.-м.н., 2013, [http://www.ipme.ru ИПМаш РАН], "Нестационарная динамика упругих тел с подвижными включениями и границами". | ||
+ | * к.ф.-м.н., 1999, [http://www.ipme.ru ИПМаш РАН], "Нестационарные процессы в упругих волноводах при преодолении критической скорости подвижной нагрузкой", научные руководители Д.А. Индейцев, П.А. Жилин. | ||
+ | * магистр т.н., 1996, каф. "Механика и процессы управления" СПбГПУ, "Математическая модель среды Кельвина", научный руководитель П.А. Жилин. | ||
+ | |||
+ | == Преподавание == | ||
+ | * Курс "Нестационарные упругие волны" для студентов кафедры [http://tm.spbstu.ru/ "Теоретическая Механика"]. | ||
+ | * слайды (1ый семестр) [http://www.pdmi.ras.ru/~serge/lectures/2018-1.pdf] | ||
+ | * слайды (2ой семестр) [http://www.pdmi.ras.ru/~serge/lectures/2018-2.pdf] | ||
+ | |||
== Основные публикации == | == Основные публикации == | ||
− | # E.V. Shishkina, S.N. Gavrilov. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. (2017) DOI: 10.1007/s00419-017-1228-y. | + | # [https://arxiv.org/abs/1907.00067 E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Passage through resonance for a system with time-varying parameters possessing a single trapped mode. ArXiv:1907.00067.] |
− | # D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics (2016) 61(12): pp. 620–624. DOI: 10.1134/S1028335816120065. | + | # [https://doi.org/10.1103/PhysRevE.100.022117 S.N. Gavrilov, A.M. Krivtsov. Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E, 100, 022117, 2019. DOI: 10.1103/PhysRevE.100.022117.] |
− | # S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc.Int. Conf. DAYS on DIFFRACTION 2016, pp. 161–165. DOI: 10.1109/DD.2016.7756834. | + | # [https://rdcu.be/bKNun M. Ferretti, S.N. Gavrilov, V.A. Eremeyev, A. Luongo. Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass. Nonlinear Dynamics, 2019. DOI: 10.1007/s11071-019-05117-z.] |
− | # S.N. Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dynamics (2016) 86(4): 2245-2260 | + | # [https://rdcu.be/bBc6J S.N. Gavrilov, A.M. Krivtsov. Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Continuum Mechanics and Thermodynamics. DOI: 10.1007/s00161-019-00782-2.] |
− | # S.N. Gavrilov, E.V. Shishkina. Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp. 96–101. DOI: 10.1109/DD.2015.7354840. | + | # [https://link.springer.com/chapter/10.1007/978-3-030-11665-1_13 S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. An infinite-length system possessing a unique trapped mode versus a single degree of freedom system: a comparative study in the case of time-varying parameters. In book: Editors: Altenbach H. et al. Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials 103,pp.231-251, Springer, 2019. DOI: 10.1007/978-3-030-11665-1_13.] |
− | # E.V. Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151 . | + | # [https://doi.org/10.1007%2Fs11071-018-04735-3 S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. Nonlinear Dynamics. 95(4), pp. 2995–3004, DOI: 10.1007/s11071-018-04735-3] |
− | # S.N. Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM (2015) 95(12): 1521–1529. | + | # [https://doi.org/10.1016/j.jsv.2018.10.016 E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness. Journal of Sound and Vibration 440C (2019) pp. 174-185. DOI: 10.1016/j.jsv.2018.10.016] |
− | # S.N. Gavrilov, E.V. Shishkina. New phase nucleation due to the collision of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581. | + | # [https://rdcu.be/OMSZ S.N. Gavrilov, A.M. Krivtsov, D.V. Tsvetkov. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mechanics and Termodynamics (2019), 31(1), pp. 255-272. DOI: 10.1007/s00161-018-0681-3.] |
− | # S.N. Gavrilov, G.C. Herman. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, (2012), 331(20): 4464-4480. | + | # [http://ieeexplore.ieee.org/document/8168010/ S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a string on the Winkler foundation with point inhomogeneity. Proc.Int. Conf. DAYS on DIFFRACTION 2017, pp. 128–133. DOI: 10.1109/DD.2017.8168010]. |
− | # S.N. Gavrilov, E.V. Shishkina. On stretching of a bar capable of undergoing phase transitions. Continuum Mechanics and Thermodynamics (2010), 22(4), 299-316. | + | # [http://rdcu.be/o5Ya E.V. Shishkina, S.N. Gavrilov. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. (2017) 87(6): pp. 1019-1036. DOI: 10.1007/s00419-017-1228-y.] |
− | # E.V. Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application of the method of direct separation of motions to the parametric stabilization of an elastic wire. Nonlinear Dynamics (2008) 54: 313-331. | + | # [http://link.springer.com/article/10.1134%2FS1028335816120065 D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics (2016) 61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.] |
− | # S. N. Gavrilov. Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM (2007) 87(2):117-127. | + | # [http://ieeexplore.ieee.org/document/7756834/ S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc. Int. Conf. DAYS on DIFFRACTION 2016, pp. 161–165. DOI: 10.1109/DD.2016.7756834.] |
− | # S. N. Gavrilov. Proper dynamics of phase interface in an infinite elastic bar with variable cross section. Doklady Physics (2007) 52(3):161-164. | + | # [http://rdcu.be/kz3u S.N. Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dynamics (2016) 86(4): 2245-2260] |
− | # S.N. Gavrilov. The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70: 582-589. | + | # [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7354840 S.N. Gavrilov, E.V. Shishkina. Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp. 96–101. DOI: 10.1109/DD.2015.7354840]. |
− | # S.N. Gavrilov, G.C. Herman. Oscillation of a | + | # [http://mms.sagepub.com/content/21/2/137 E.V. Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151 ]. |
− | # S.N. Gavrilov, D.A. Indeitsev. On the evolution of localized mode of oscillation in system "string on an elastic foundation - moving inertial inclusion". PMM J. Appl. Math. Mechs (2002) 66(5):825-833. | + | # [http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400155/abstract S.N. Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM (2015) 95(12): 1521–1529.] |
− | # S. Gavrilov. Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mechanica (2002) 154:47-60. | + | # [http://link.springer.com/article/10.1134/S1028335814120027 S.N. Gavrilov, E.V. Shishkina. New phase nucleation due to the collision of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581.] |
− | # S. Gavrilov. Transition through the critical velocity for a moving load in an elastic waveguide. Technical Physics (2000) 45(4):515-518. | + | # [http://www.sciencedirect.com/science/article/pii/S0022460X12003896 S.N. Gavrilov, G.C. Herman. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, (2012), 331(20): 4464-4480.] |
− | # S. Gavrilov. Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. Journal of Sound and Vibration (1999) 222(3):345-361. | + | # [http://link.springer.com/article/10.1007/s00161-010-0139-8 S.N. Gavrilov, E.V. Shishkina. On stretching of a bar capable of undergoing phase transitions. Continuum Mechanics and Thermodynamics (2010), 22(4), 299-316.] |
+ | # [http://link.springer.com/article/10.1007/s11071-008-9331-9 E.V. Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application of the method of direct separation of motions to the parametric stabilization of an elastic wire. Nonlinear Dynamics (2008) 54: 313-331.] | ||
+ | # [http://onlinelibrary.wiley.com/doi/10.1002/zamm.200610306/abstract S. N. Gavrilov. Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM (2007) 87(2):117-127.] | ||
+ | # [http://link.springer.com/article/10.1134/S1028335807030081 S. N. Gavrilov. Proper dynamics of phase interface in an infinite elastic bar with variable cross section. Doklady Physics (2007) 52(3):161-164.] | ||
+ | # [http://www.sciencedirect.com/science/article/pii/S0021892806000931 S.N. Gavrilov. The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70: 582-589.] | ||
+ | # [http://link.springer.com/article/10.1007/s10659-004-5902-2 S.N. Gavrilov, G.C. Herman. Oscillation of a punch moving on the free surface of an elastic half space. Journal of Elasticity (2004) 75: 247-265.] | ||
+ | # [http://www.sciencedirect.com/science/article/pii/S0021892802900134 S.N. Gavrilov, D.A. Indeitsev. On the evolution of localized mode of oscillation in system "string on an elastic foundation - moving inertial inclusion". PMM J. Appl. Math. Mechs (2002) 66(5):825-833.] | ||
+ | # [http://link.springer.com/article/10.1007/BF01170698 S. Gavrilov. Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mechanica (2002) 154:47-60.] | ||
+ | # [http://link.springer.com/article/10.1134/1.1259668 S. Gavrilov. Transition through the critical velocity for a moving load in an elastic waveguide. Technical Physics (2000) 45(4):515-518. ] | ||
+ | # [http://www.sciencedirect.com/science/article/pii/S0022460X9892051X S. Gavrilov. Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. Journal of Sound and Vibration (1999) 222(3):345-361. ] |
Текущая версия на 12:57, 15 августа 2019
Научные интересы[править]
Рациональная механика, нестационарные волны, подвижные нагрузки, локализация волн, асимптотика, конфигурационные силы, фазовые превращения, реология, баллистическое распространение тепла.
Место работы[править]
- Институт проблем машиноведения РАН, лаб. математического моделирования волновых процессов, ведущий научный сотрудник.
- Санкт-Петербургский политехнический университет Петра Великого, кафедра "Теоретическая механика", профессор
Образование[править]
- д.ф.-м.н., 2013, ИПМаш РАН, "Нестационарная динамика упругих тел с подвижными включениями и границами".
- к.ф.-м.н., 1999, ИПМаш РАН, "Нестационарные процессы в упругих волноводах при преодолении критической скорости подвижной нагрузкой", научные руководители Д.А. Индейцев, П.А. Жилин.
- магистр т.н., 1996, каф. "Механика и процессы управления" СПбГПУ, "Математическая модель среды Кельвина", научный руководитель П.А. Жилин.
Преподавание[править]
- Курс "Нестационарные упругие волны" для студентов кафедры "Теоретическая Механика".
- слайды (1ый семестр) [1]
- слайды (2ой семестр) [2]
Основные публикации[править]
- E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Passage through resonance for a system with time-varying parameters possessing a single trapped mode. ArXiv:1907.00067.
- S.N. Gavrilov, A.M. Krivtsov. Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E, 100, 022117, 2019. DOI: 10.1103/PhysRevE.100.022117.
- M. Ferretti, S.N. Gavrilov, V.A. Eremeyev, A. Luongo. Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass. Nonlinear Dynamics, 2019. DOI: 10.1007/s11071-019-05117-z.
- S.N. Gavrilov, A.M. Krivtsov. Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Continuum Mechanics and Thermodynamics. DOI: 10.1007/s00161-019-00782-2.
- S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. An infinite-length system possessing a unique trapped mode versus a single degree of freedom system: a comparative study in the case of time-varying parameters. In book: Editors: Altenbach H. et al. Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials 103,pp.231-251, Springer, 2019. DOI: 10.1007/978-3-030-11665-1_13.
- S.N. Gavrilov, E.V. Shishkina, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. Nonlinear Dynamics. 95(4), pp. 2995–3004, DOI: 10.1007/s11071-018-04735-3
- E.V. Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness. Journal of Sound and Vibration 440C (2019) pp. 174-185. DOI: 10.1016/j.jsv.2018.10.016
- S.N. Gavrilov, A.M. Krivtsov, D.V. Tsvetkov. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mechanics and Termodynamics (2019), 31(1), pp. 255-272. DOI: 10.1007/s00161-018-0681-3.
- S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a string on the Winkler foundation with point inhomogeneity. Proc.Int. Conf. DAYS on DIFFRACTION 2017, pp. 128–133. DOI: 10.1109/DD.2017.8168010.
- E.V. Shishkina, S.N. Gavrilov. Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. (2017) 87(6): pp. 1019-1036. DOI: 10.1007/s00419-017-1228-y.
- D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics (2016) 61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.
- S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc. Int. Conf. DAYS on DIFFRACTION 2016, pp. 161–165. DOI: 10.1109/DD.2016.7756834.
- S.N. Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dynamics (2016) 86(4): 2245-2260
- S.N. Gavrilov, E.V. Shishkina. Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp. 96–101. DOI: 10.1109/DD.2015.7354840.
- E.V. Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151 .
- S.N. Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM (2015) 95(12): 1521–1529.
- S.N. Gavrilov, E.V. Shishkina. New phase nucleation due to the collision of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581.
- S.N. Gavrilov, G.C. Herman. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, (2012), 331(20): 4464-4480.
- S.N. Gavrilov, E.V. Shishkina. On stretching of a bar capable of undergoing phase transitions. Continuum Mechanics and Thermodynamics (2010), 22(4), 299-316.
- E.V. Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application of the method of direct separation of motions to the parametric stabilization of an elastic wire. Nonlinear Dynamics (2008) 54: 313-331.
- S. N. Gavrilov. Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM (2007) 87(2):117-127.
- S. N. Gavrilov. Proper dynamics of phase interface in an infinite elastic bar with variable cross section. Doklady Physics (2007) 52(3):161-164.
- S.N. Gavrilov. The effective mass of a point mass moving along a string on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70: 582-589.
- S.N. Gavrilov, G.C. Herman. Oscillation of a punch moving on the free surface of an elastic half space. Journal of Elasticity (2004) 75: 247-265.
- S.N. Gavrilov, D.A. Indeitsev. On the evolution of localized mode of oscillation in system "string on an elastic foundation - moving inertial inclusion". PMM J. Appl. Math. Mechs (2002) 66(5):825-833.
- S. Gavrilov. Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mechanica (2002) 154:47-60.
- S. Gavrilov. Transition through the critical velocity for a moving load in an elastic waveguide. Technical Physics (2000) 45(4):515-518.
- S. Gavrilov. Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. Journal of Sound and Vibration (1999) 222(3):345-361.