Переход к тепловому равновесию в гармонической ГЦК решетке — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Вывод уравнений)
 
(не показано 18 промежуточных версий 2 участников)
Строка 1: Строка 1:
Автор: [http://tm.spbstu.ru/%D0%9B%D1%8F%D0%B6%D0%BA%D0%BE%D0%B2_%D0%A1%D0%B5%D1%80%D0%B3%D0%B5%D0%B9 Ляжков Сергей]
+
'''Курсовой проект''' по [[Механика дискретных сред|Механике дискретных сред]]
  
[[Файл: fcc.png|thumb|]]  
+
'''Исполнитель:''' [http://tm.spbstu.ru/%D0%9B%D1%8F%D0%B6%D0%BA%D0%BE%D0%B2_%D0%A1%D0%B5%D1%80%D0%B3%D0%B5%D0%B9 Ляжков Сергей]
  
==Аннотация==
+
'''Группа:''' 43604/1
  
В работе рассматривается поведение кинетической температуры при переходе к тепловому равновесию в бесконечной  гармонической гранецентрированной кубической решетке. В начальный момент времени частицы имеют нулевые перемещения и случайные начальные скорости. Начальное распределение температуры по пространству однородно. Начальные кинетические температуры, соответвующие различным пространственным направлениям, вообще говоря, не равны. В данной работе исследуются два быстрых процесса, которыми обусловлен переход к тепловому равновесию: выравнивание кинетической и потенциальной энергий и перераспределение температуры по пространственным направлениям. Показано, что равное распределение в общем случае не достигается. Получены формулы, описывающие поведения температуры.
+
'''Семестр:''' осень 2018
  
=Результаты=
+
[[Файл: fcc.png|thumb|]]
 +
 
 +
===Постановка задачи===
 +
 
 +
Рассмотреть поведение кинетической температуры при переходе к тепловому равновесию в бесконечной гармонической гранецентрированной кубической (ГЦК) решетке при следующих начальных условиях:
 +
 
 +
# Частицы имеют нулевые  перемещения.
 +
# Частицы имеют случайные скорости.
 +
# Распределение температуры - однородное.
 +
# Кинетические температуры, соответствующие различным пространственным направлениям, не равны.
 +
 
 +
===Вывод уравнений===
 +
 
 +
Рассмотрим кристаллическую ГЦК решетку, состоящую из одинаковых частиц массой <math> m </math>, соединенных линейными пружинками жесткостью <math> c </math>. Уравнения движения частицы с радиус-вектором <math> \textbf{r} </math> имеют следующий вид: <br /> <math> m \ddot{\textbf{u}}(\textbf{r}) = \sum_\alpha \textbf{C}_\alpha  \textbf{u}(\textbf{r}+\textbf{a}_\alpha)</math>, <br />
 +
где <math> \textbf{u}(\textbf{r}) = (u_x, u_y, u_z)^\top </math> - вектор-столбец, состоящий из компонент вектора перемещения частицы с радиус-вектором <math> \textbf{r} </math>,  <math> \textbf{a}_\alpha </math> - векторы, соединяющие частицу с радиус-вектором <math> \textbf{r} </math> с ближайшими соседями. <math> \textbf{C}_\alpha </math> - матрицы, коэффициенты которых определяют вклад частицы номер <math>  \alpha </math> в суммарную силу, действующую на частицу с радиус-вектором <math> \textbf{r} </math>. <math> \alpha = \pm 1...\pm 6 </math>, <math> \textbf{C}_\alpha = c\textbf{n}_\alpha \textbf{n}_\alpha</math>.  <br />
 +
Векторы <math> \textbf{n}_\alpha = \frac{\textbf{a}_\alpha}{|\textbf{a}_\alpha|}</math> в ГЦК решетке имеют следующий вид: <br />
 +
<math> \textbf{n}_{\pm1}=\pm\frac{(\textbf{e}_x+\textbf{e}_y)}{\sqrt{2}}, \textbf{n}_{\pm4} = \pm(\textbf{n}_3-\textbf{n}_2) </math><br />
 +
<math> \textbf{n}_{\pm2}=\pm\frac{(\textbf{e}_y+\textbf{e}_z)}{\sqrt{2}}, \textbf{n}_{\pm5} = \pm(\textbf{n}_1-\textbf{n}_3) </math><br />
 +
<math> \textbf{n}_{\pm3}=\pm\frac{(\textbf{e}_x+\textbf{e}_z)}{\sqrt{2}}, \textbf{n}_{\pm6} = \pm(\textbf{n}_1-\textbf{n}_2) </math>, <br />
 +
где <math> \textbf{e}_x, \textbf{e}_y, \textbf{e}_z </math> - орты декартового базиса, направленные вдоль осей кубической симметрии. <br/>
 +
Сделаем следующую подстановку в уравнения движения для получения дисперсионного соотношения <math> \omega </math>: <br />
 +
<math> \textbf{u}(\textbf{r}) = e^{\textrm{i}(\omega t + \textbf{k} \cdot \textbf{r})} </math>,
 +
<br />
 +
где <math> \textbf{k} </math> - волновой вектор, и получим следующее уравнение: <br />
 +
<math> (\textbf{D}-\omega^2 \textbf{E})=0, \textbf{D} = -\frac{1}{m} \sum_\alpha \textbf{C}_\alpha e^{\textrm{i}{\textbf{k} \cdot \textbf{a}_\alpha}} </math>. <br/>
 +
Таким образом, отыскание дисперсионного соотношения, необходимого для следующих формул, сводится к нахождению собственных чисел динамической матрицы <math> \textbf{D} </math>. <br/> Формула для для кинетической температуры <math> T </math>: <br/>
 +
<math> T = \frac{T_0}{2} + B_1 + B_2 + B_3, \quad B_j = \int_\textbf{k} (\textrm{cos} (2\omega_j t)) \textrm{d} \textbf{k} </math>, <br />
 +
где <math> T_0 </math> - начальное значение кинетической температуры. Величина <math> T </math> описывает колебания температуры, связанные с выравниванием кинетической и потенциальной энергий, величины <math> B_j </math> определяют вклад веток дисперсионного соотношения в эти колебания. <br />
 +
Рассмотрим бесконечное множество реализаций одного и того же кристалла. Кинетические температуры, соответствующие различным пространственным направлениям, в общем случае различаются. Следовательно, тепловое состояние описывается матричной температурой <math> \textbf{T}. </math> <br />
 +
<math> k_B \textbf{T} = m <\dot{\textbf{u}}(\textbf{r})\dot{\textbf{u}}(\textbf{r})^\top> </math>, <br />
 +
где <math> k_B </math> - постоянная Больцмана. <br />
 +
Поведение матричной температуры описывается следующей точной формулой: <br />
 +
<math> \textbf{T} = \int_\textbf{k} \textbf{P}\textbf{T}'\textbf{P}^\top, T'_{ij} = \frac{1}{2}(\textbf{P}^\top \textbf{T}_0 \textbf{P})_{ij}(\textrm{cos}((\omega_i+\omega_j)t)+\textrm{cos}((\omega_i-\omega_j)t)), </math> <br/>
 +
где <math> \textbf{P} - </math> ортогональная матрица поляризации, составленная  из единичных собственных векторов матрицы <math> \textbf{D} </math>,
 +
<math> \textbf{T}_0 </math> - начальное значение матричной температуры. <br/>
 +
Матричная и кинетическая температуры связаны следующим образом: <br/>
 +
<math> T = \frac{1}{3}\textrm{tr}\textbf{T}. </math>
 +
 
 +
===Результаты===
  
 
Вклады веток дисперсионного соотношения в колебания температуры:
 
Вклады веток дисперсионного соотношения в колебания температуры:
[[File:disp_stt.png]]
+
[[File:disp_stt.png|center]]
  
 
Колебания кинетической температуры, связанные с выравниванием кинетической и потенциальной энергий:
 
Колебания кинетической температуры, связанные с выравниванием кинетической и потенциальной энергий:
[[File:K_gck_ftt.png]]
+
[[File:K_gck_ftt.png|center]]
  
 
Перераспределение кинетической температуры по пространственным направлениям:
 
Перераспределение кинетической температуры по пространственным направлениям:
[[File:redistrib_ftt.png]]
+
[[File:redistrib_ftt.png|center]]
  
Линии - аналитическое решения по формулам, представленным в моей статье, точки - численное решение уравнения динамики решетки.
+
Линии - аналитическое решения по формулам, представленным в нижеприведенной статье, точки - численное решение уравнения динамики решетки.
  
=Текст статьи=
+
===Текст статьи===
 
[http://mech.spbstu.ru/File:FCC_stt.pdf Переход к тепловому равновесию в гармонической гранецентрированной кубической решетке]
 
[http://mech.spbstu.ru/File:FCC_stt.pdf Переход к тепловому равновесию в гармонической гранецентрированной кубической решетке]
  
=Неделя Науки 2018=
+
===Неделя науки 2018===
 +
 
 +
Данный проект был представлен на конференции "Неделя науки 2018".
  
 
[http://mech.spbstu.ru/File:Poster_NN.pdf Постер]
 
[http://mech.spbstu.ru/File:Poster_NN.pdf Постер]
 +
 +
===См.также===
 +
 +
[http://tm.spbstu.ru/%D0%9A%D1%83%D1%80%D1%81%D0%BE%D0%B2%D1%8B%D0%B5_%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D1%8B_%D0%BF%D0%BE_%D0%92%D0%9C%D0%94%D0%A1:_2018-2019 Курсовые_работы_по_ВМДС:_2018-2019]

Текущая версия на 18:48, 18 марта 2019

Курсовой проект по Механике дискретных сред

Исполнитель: Ляжков Сергей

Группа: 43604/1

Семестр: осень 2018

Fcc.png

Постановка задачи[править]

Рассмотреть поведение кинетической температуры при переходе к тепловому равновесию в бесконечной гармонической гранецентрированной кубической (ГЦК) решетке при следующих начальных условиях:

  1. Частицы имеют нулевые перемещения.
  2. Частицы имеют случайные скорости.
  3. Распределение температуры - однородное.
  4. Кинетические температуры, соответствующие различным пространственным направлениям, не равны.

Вывод уравнений[править]

Рассмотрим кристаллическую ГЦК решетку, состоящую из одинаковых частиц массой [math] m [/math], соединенных линейными пружинками жесткостью [math] c [/math]. Уравнения движения частицы с радиус-вектором [math] \textbf{r} [/math] имеют следующий вид:
[math] m \ddot{\textbf{u}}(\textbf{r}) = \sum_\alpha \textbf{C}_\alpha \textbf{u}(\textbf{r}+\textbf{a}_\alpha)[/math],
где [math] \textbf{u}(\textbf{r}) = (u_x, u_y, u_z)^\top [/math] - вектор-столбец, состоящий из компонент вектора перемещения частицы с радиус-вектором [math] \textbf{r} [/math], [math] \textbf{a}_\alpha [/math] - векторы, соединяющие частицу с радиус-вектором [math] \textbf{r} [/math] с ближайшими соседями. [math] \textbf{C}_\alpha [/math] - матрицы, коэффициенты которых определяют вклад частицы номер [math] \alpha [/math] в суммарную силу, действующую на частицу с радиус-вектором [math] \textbf{r} [/math]. [math] \alpha = \pm 1...\pm 6 [/math], [math] \textbf{C}_\alpha = c\textbf{n}_\alpha \textbf{n}_\alpha[/math].
Векторы [math] \textbf{n}_\alpha = \frac{\textbf{a}_\alpha}{|\textbf{a}_\alpha|}[/math] в ГЦК решетке имеют следующий вид:
[math] \textbf{n}_{\pm1}=\pm\frac{(\textbf{e}_x+\textbf{e}_y)}{\sqrt{2}}, \textbf{n}_{\pm4} = \pm(\textbf{n}_3-\textbf{n}_2) [/math]
[math] \textbf{n}_{\pm2}=\pm\frac{(\textbf{e}_y+\textbf{e}_z)}{\sqrt{2}}, \textbf{n}_{\pm5} = \pm(\textbf{n}_1-\textbf{n}_3) [/math]
[math] \textbf{n}_{\pm3}=\pm\frac{(\textbf{e}_x+\textbf{e}_z)}{\sqrt{2}}, \textbf{n}_{\pm6} = \pm(\textbf{n}_1-\textbf{n}_2) [/math],
где [math] \textbf{e}_x, \textbf{e}_y, \textbf{e}_z [/math] - орты декартового базиса, направленные вдоль осей кубической симметрии.
Сделаем следующую подстановку в уравнения движения для получения дисперсионного соотношения [math] \omega [/math]:
[math] \textbf{u}(\textbf{r}) = e^{\textrm{i}(\omega t + \textbf{k} \cdot \textbf{r})} [/math],
где [math] \textbf{k} [/math] - волновой вектор, и получим следующее уравнение:
[math] (\textbf{D}-\omega^2 \textbf{E})=0, \textbf{D} = -\frac{1}{m} \sum_\alpha \textbf{C}_\alpha e^{\textrm{i}{\textbf{k} \cdot \textbf{a}_\alpha}} [/math].
Таким образом, отыскание дисперсионного соотношения, необходимого для следующих формул, сводится к нахождению собственных чисел динамической матрицы [math] \textbf{D} [/math].
Формула для для кинетической температуры [math] T [/math]:
[math] T = \frac{T_0}{2} + B_1 + B_2 + B_3, \quad B_j = \int_\textbf{k} (\textrm{cos} (2\omega_j t)) \textrm{d} \textbf{k} [/math],
где [math] T_0 [/math] - начальное значение кинетической температуры. Величина [math] T [/math] описывает колебания температуры, связанные с выравниванием кинетической и потенциальной энергий, величины [math] B_j [/math] определяют вклад веток дисперсионного соотношения в эти колебания.
Рассмотрим бесконечное множество реализаций одного и того же кристалла. Кинетические температуры, соответствующие различным пространственным направлениям, в общем случае различаются. Следовательно, тепловое состояние описывается матричной температурой [math] \textbf{T}. [/math]
[math] k_B \textbf{T} = m \lt \dot{\textbf{u}}(\textbf{r})\dot{\textbf{u}}(\textbf{r})^\top\gt [/math],
где [math] k_B [/math] - постоянная Больцмана.
Поведение матричной температуры описывается следующей точной формулой:
[math] \textbf{T} = \int_\textbf{k} \textbf{P}\textbf{T}'\textbf{P}^\top, T'_{ij} = \frac{1}{2}(\textbf{P}^\top \textbf{T}_0 \textbf{P})_{ij}(\textrm{cos}((\omega_i+\omega_j)t)+\textrm{cos}((\omega_i-\omega_j)t)), [/math]
где [math] \textbf{P} - [/math] ортогональная матрица поляризации, составленная из единичных собственных векторов матрицы [math] \textbf{D} [/math], [math] \textbf{T}_0 [/math] - начальное значение матричной температуры.
Матричная и кинетическая температуры связаны следующим образом:
[math] T = \frac{1}{3}\textrm{tr}\textbf{T}. [/math]

Результаты[править]

Вклады веток дисперсионного соотношения в колебания температуры:

Disp stt.png

Колебания кинетической температуры, связанные с выравниванием кинетической и потенциальной энергий:

K gck ftt.png

Перераспределение кинетической температуры по пространственным направлениям:

Redistrib ftt.png

Линии - аналитическое решения по формулам, представленным в нижеприведенной статье, точки - численное решение уравнения динамики решетки.

Текст статьи[править]

Переход к тепловому равновесию в гармонической гранецентрированной кубической решетке

Неделя науки 2018[править]

Данный проект был представлен на конференции "Неделя науки 2018".

Постер

См.также[править]

Курсовые_работы_по_ВМДС:_2018-2019