Перераспределение энергии между поступательными и вращательными степенями свободы — различия между версиями
Anpolol (обсуждение | вклад) (→Обезразмеривание уравнений движения) |
Anpolol (обсуждение | вклад) (→Обезразмеривание энергии) |
||
Строка 112: | Строка 112: | ||
===Обезразмеривание энергии=== | ===Обезразмеривание энергии=== | ||
+ | |||
+ | Кинетическая энергия данной системы состоит из суммы кинетической энергии поступательного и вращательного движений: | ||
+ | |||
+ | <math> | ||
+ | T = \sum_{i=1}^N \frac{m\dot{y_{i}}^2}{2} + \sum_{i=1}^N \frac{J\dot{\phi_{i}}^2}{2} | ||
+ | </math><br /> | ||
+ | |||
+ | Для обезразмеривания перепишем вышеприведенное выражение в виде: | ||
+ | |||
+ | <math> | ||
+ | T = \sum_{i=1}^N \frac{ml^2\omega_{1}^2}{2}\left(\frac{d\frac{y_{i}}{l}}{d(t\omega_{1})}\right)^2 + \sum_{i=1}^N \frac{J\omega_{1}^2}{2}\left(\frac{d\phi}{d(t\omega_{1})}\right)^2 | ||
+ | </math><br /> | ||
+ | |||
+ | Получаем обезразмеренную энергию: | ||
+ | |||
+ | <math> | ||
+ | \overline{T} = \frac{T}{ml^2\omega_{1}^2} = \sum_{i=1}^N \frac{(\overline{y_{i}}')^2}{2} + \sum_{i=1}^N \frac{J}{ml^2}\frac{(\phi')^2}{2} | ||
+ | </math><br /> | ||
+ | |||
+ | Осталось вычислить коэффициент перед обезразмеренной кинетической энергией вращательного движения: <math> \frac{J}{ml^2}</math> | ||
+ | |||
+ | Для этого воспользуемся видом частот <math>\omega_{1}^2</math> и <math>\omega_{2}^2 </math>, полученные в предыдущем пункте и получим, что <math> \frac{J}{ml^2}= \frac{1}{6}</math> | ||
+ | |||
+ | Окончательно, обезраземеренная кинетическая энергия системы примет вид: | ||
+ | |||
+ | <math> | ||
+ | \overline{T} = \sum_{i=1}^N \frac{(\overline{y_{i}}')^2}{2} + \frac{1}{6} \sum_{i=1}^N \frac{(\phi')^2}{2} | ||
+ | </math><br /> | ||
===Визуализация=== | ===Визуализация=== |
Версия 21:28, 5 января 2019
Содержание
Постановка задачи
Рассмотреть перераспределение энергии между вращательными и поступательными степенями свободы в системе из N тел-точек, соединенных друг с другом балками Бернулли-Эйлера.
Вывод уравнений
Рассматривается система из N тел-точек. Каждое
-ое тело имеет две степени свободы - смещение вдоль вертикальной оси , и угол поворота относительно вертикальной оси . Все тела соединены стержнями, которые описываются уравнением балки Бернулли - Эйлера. Движение каждого тела - точки описывается уравнениями:
где момент инерции тела-точки.
Моменты и силы находим по определению:
где
модуль юнга материала балки, момент инерции сечения балки. Вид функции y(x) найдем из уравнения Балки - Бернулли Эйлера:
получаем:
Для поиска коэффициентов необходимы граничные условия. Для
ого тела рассмотрим два участка: балка, соединяющая и тела:
и на участке, соединяющим
и тела-точки:
где
длина балки.Учитывая граничные условия и все вышеприведенные формулы, находим уравнения движения
Обезразмеривание уравнений движения
Перепишем уравнения, полученные в предыдущем пункте, в виде:
гд
положим равными единицам.
Получили обезразмеренные уравнения:
Обезразмеривание энергии
Кинетическая энергия данной системы состоит из суммы кинетической энергии поступательного и вращательного движений:
Для обезразмеривания перепишем вышеприведенное выражение в виде:
Получаем обезразмеренную энергию:
Осталось вычислить коэффициент перед обезразмеренной кинетической энергией вращательного движения:
Для этого воспользуемся видом частот
и , полученные в предыдущем пункте и получим, чтоОкончательно, обезраземеренная кинетическая энергия системы примет вид: