Совершенствование алгоритмов численного моделирования в методе динамики частиц — различия между версиями
(→Модифицированный метод Рунге-Кутты) |
(→Модифицированный метод Рунге-Кутты) |
||
Строка 3: | Строка 3: | ||
* ... | * ... | ||
− | == | + | == Построение модифицированного метода Рунге-Кутты 4 порядка == |
Рассмотрим задачу Коши | Рассмотрим задачу Коши | ||
Строка 45: | Строка 45: | ||
<math> (x,t)=(v,\frac{F(r)}{m}) </math> | <math> (x,t)=(v,\frac{F(r)}{m}) </math> | ||
− | <math> f(x_n+k_i/2,t_n+Δt/2) = (v,\frac{F(r+k_i^ | + | <math> f(x_n+k_i/2,t_n+Δt/2) = (v,\frac{F(r+k_i^r/2)}{m}) = ( v+\frac {k_1^v}{2},\frac {F(r+\frac {k_1^r}{2})}{m} )= </math> |
− | <math> = | + | <math> =( v+\frac {k_1^v}{2},\frac {F_n + \frac {dF}{dr} (r) \frac{k_1^r}{2}}{m} ) / / (5) </math> |
где | где |
Версия 16:29, 16 октября 2011
Содержание
Задача
- ...
Построение модифицированного метода Рунге-Кутты 4 порядка
Рассмотрим задачу Коши
Для неизвестной вектор-функции x(t), в качестве которой для примера может быть взят вектор
координат позиции и скорости тела. Данная задача может быть решена численно классическим методом Рунге-Кутты четвёртого порядка.
По сравнению с методами Эйлера, Лагранжа и Верле, данный метод имеет более высокий порядок точности. Однако классический метод Рунге-Кутты четвёртого порядка имеет одну особенность, связанную с необходимостью вычислять функцию
четыре раза за одну временную итерацию. Потому этот метод становится неэффективным в вычислительных задачах, где основное расчётное время тратится на вычисление правой части системы дифференциальных уравнений, как, например, это имеет место в случае расчёта молекулярно-динамической задачи множества частиц. Вследствие данной особенности применение метода Рунге-Кутты становится неэффективным и даже его исключительная точность теряет свою значимость.Ниже приводится модификация метода Рунге-Кутты 4 порядка, где с помощью одного хитрого приёма удаётся избежать многократного вычисления функцию
на одном временном шаге и в то же время сохранить высокий порядок по времени.Идея заключается в разложении функций
в ряд Тейлора в окрестности точки .
Здесь присутствуют малоприятные производные, однако, как потом окажется, с ними можно будет легко разобраться. Сколько членов в разложении нужно оставить, чтобы в схеме сохранился четвёртый порядок? – До
и или меньше?Для слагаемых с локальными производными по времени ответ очевиден – необходимо удерживать всё вплоть до
, ибо в противном случае мы потеряем наш 4-й порядок по времени для схемы в целом. Однако для на самом деле достаточно только первой производной.В случае, когда правая часть (1) не зависит явно от времени, (3) предельно упрощается.
Данная ситуация имеет место при молекулярно-динамическом моделировании, поскольку потенциал взаимодействия, как правило, является функцией только координат и скоростей частиц.
Запишем (4) в случае молекулярно-динамического моделирования. В нашем случае неизвестная вектор-функция
.
где
Обезразмеривание системы как способ уменьшения накопления вычислительной ошибки
- ...
Frozen Particles & Press Particles
- ...