Моделирование митрального клапана — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Обработка данных c компьютерного томографа)
 
(не показано 14 промежуточных версий 2 участников)
Строка 14: Строка 14:
  
 
==Строение митрального клапана==
 
==Строение митрального клапана==
[[Файл:MV anatomy.png|thumb|Рисунок Н. Строение митрального клапана.|250px]]
+
 
Митральный клапан состоит из фиброзного кольца, двух створок, хорд и папиллярных мышц (рисунок 2).  Главная его задача – контроль потока крови от левого предсердия к левому желудочку. Во время систолы желудочков, митральный клапан закрывается, чтобы предотвратить регургитацию (обратный ток) крови в левое предсердие.
+
Митральный клапан состоит из фиброзного кольца, двух створок, хорд и папиллярных мышц (рисунок 1).  Главная его задача – контроль потока крови от левого предсердия к левому желудочку. Во время систолы желудочков, митральный клапан закрывается, чтобы предотвратить регургитацию (обратный ток) крови в левое предсердие.
 +
 
 +
<gallery widths=330px heights=300px perrow = 1>
 +
Файл:MV anatomy.png|Рисунок 1. Строение митрального клапана.
 +
</gallery>
  
 
Хордами называют сухожильные соединительные волокна, которые скрепляют свободные края створок митрального клапана с папиллярными мышцами, расположенными на внутренней поверхности левого желудочка. Во время сокращения желудочков, папиллярные мышцы сокращаются и натянутые хорды предотвращают пролапсирование митрального клапана.
 
Хордами называют сухожильные соединительные волокна, которые скрепляют свободные края створок митрального клапана с папиллярными мышцами, расположенными на внутренней поверхности левого желудочка. Во время сокращения желудочков, папиллярные мышцы сокращаются и натянутые хорды предотвращают пролапсирование митрального клапана.
Строка 21: Строка 25:
 
==Пролапс митрального клапана ==
 
==Пролапс митрального клапана ==
  
Пролапс митрального клапана (ПМК) — это порок сердца, при котором происходит прогиб створок митрального клапана в левое предсердие во время сокращения левого желудочка (рисунок 3). В норме во время сокращения предсердия клапан открыт и кровь поступает в желудочек. Затем клапан закрывается и происходит сокращение желудочка, за счет которого кровь выбрасывается в аорту. При ПМК прогиб створок клапана во время сокращения левого желудочка приводит к тому, что часть крови поступает обратно в предсердие. В редких случаях величина регургитации велика и требуется коррекция порока, вплоть до хирургического вмешательства.
+
Пролапс митрального клапана (ПМК) — это порок сердца, при котором происходит прогиб створок митрального клапана в левое предсердие во время сокращения левого желудочка. В норме во время сокращения предсердия клапан открыт и кровь поступает в желудочек. Затем клапан закрывается и происходит сокращение желудочка, за счет которого кровь выбрасывается в аорту. При ПМК прогиб створок клапана во время сокращения левого желудочка приводит к тому, что часть крови поступает обратно в предсердие. В редких случаях величина регургитации велика и требуется коррекция порока, вплоть до хирургического вмешательства.
 
 
[[Файл:MVP.png|thumb|Рисунок Н. Сравнение нормального митрального клапана и клапана с пролапсом.|400px]]
 
 
 
Научный сотрудник детского госпиталя Бостона, преподаватель хирургии медицинского факультета Гарвардского университета, Васильев Николай Владимирович предложил проведение операции на работающем сердце с исправлением пролапса митрального клапана за счет специального устройства “Клип”, закрепленного на створке клапана и тем самым предотвращающего провисание створок клапана в область левого желудочка (рисунок 4).  
 
  
[[Файл:Leaflet with clip.png|thumb|Рисунок Н. Способ крепления устройства “Клип” на створке митрального клапана.|200px]]
+
Научный сотрудник детского госпиталя Бостона, преподаватель хирургии медицинского факультета Гарвардского университета, Васильев Николай Владимирович предложил проведение операции на работающем сердце с исправлением пролапса митрального клапана за счет специального устройства “Клип”, закрепленного на створке клапана и тем самым предотвращающего провисание створок клапана в область левого желудочка (рисунок 3).
 +
 +
<gallery widths=330px heights=300px perrow = 2>
 +
Файл:MVP.png|Рисунок 2. Сравнение нормального митрального клапана и клапана с пролапсом.
 +
Файл:Leaflet with clip.png|Рисунок 3. Способ крепления устройства “Клип” на створке митрального клапана.
 +
</gallery>
  
 
В итоге, полный цикл лечения больного будет выглядеть следующим образом: при обнаружении пролапса митрального клапана пациента направляют на обследование компьютерным томографом высокого разрешения, после чего данные с томографа обрабатываются и строится 3D модель митрального клапана, после этого проводится анализ напряженно-деформированного состояния и принятие решения об установке устройства “Клип”.
 
В итоге, полный цикл лечения больного будет выглядеть следующим образом: при обнаружении пролапса митрального клапана пациента направляют на обследование компьютерным томографом высокого разрешения, после чего данные с томографа обрабатываются и строится 3D модель митрального клапана, после этого проводится анализ напряженно-деформированного состояния и принятие решения об установке устройства “Клип”.
Строка 53: Строка 58:
 
Для моделирования в конечно-элементном пакете ANSYS требуется построение расчетной модели. Модель митрального клапана может быть получена двумя методами: компьютерная томография с высоким разрешением, либо созданная вручную 3D модель по анатомическим альбомам и медицинским справочникам. В данной работе геометрическая модель митрального клапана выполнена c использованием программы ANSYS SpaceClaim. Достоверные размеры клапана были взяты из статей, направленных на изучение анатомии клапанов сердца [6].
 
Для моделирования в конечно-элементном пакете ANSYS требуется построение расчетной модели. Модель митрального клапана может быть получена двумя методами: компьютерная томография с высоким разрешением, либо созданная вручную 3D модель по анатомическим альбомам и медицинским справочникам. В данной работе геометрическая модель митрального клапана выполнена c использованием программы ANSYS SpaceClaim. Достоверные размеры клапана были взяты из статей, направленных на изучение анатомии клапанов сердца [6].
  
[[Файл:Geom.PNG|thumb|Рисунок Н. Геометрическая модель митрального клапана.|200px]]
+
<gallery widths=330px heights=300px perrow = 1>
 +
Файл:Geom.PNG|Рисунок 4. Геометрическая модель митрального клапана.
 +
</gallery>
  
В таблице 2 не указан очень важный параметр – толщина створок, это связано с тем, что распределение толщины по поверхности митрального клапана имеет неоднородное значение. Характер распределения толщины по поверхности клапана [7] приведен на рис. 9.  
+
Неоднородное распределение толщины( рисунок 5) было реализовано с помощью опции “External Data”, которая позволяет пользователям импортировать данные в текстовом формате из внешних источников или программ сторонних разработчиков в приложения ANSYS. Процедура импорта заключается в том, что пользователь задаёт программе величину толщины в указанной точке, и затем, это значение интерполируется на узлах модели, расположенных в указанном диапазоне.
  
[[Файл:Thick.png|thumb|Рисунок Н. Распределение толщины по поверхности митрального клапана.|200px]]
+
<gallery widths=330px heights=300px perrow = 1>
 
+
Файл:Thick.png|Рисунок 5. Распределение толщины по поверхности митрального клапана.
Неоднородное распределение толщины было реализовано с помощью опции “External Data”, которая позволяет пользователям импортировать данные в текстовом формате из внешних источников или программ сторонних разработчиков в приложения ANSYS. Процедура импорта заключается в том, что пользователь задаёт программе величину толщины в указанной точке, и затем, это значение интерполируется на узлах модели, расположенных в указанном диапазоне.
+
</gallery>
  
 
==Конечно-элементная модель==
 
==Конечно-элементная модель==
  
По описанной выше геометрической модели была построена конечно-элементная модель митрального клапана (рис. 11).  
+
По описанной выше геометрической модели была построена конечно-элементная модель митрального клапана (рисунок 6).  
 
 
[[Файл:Mesh.png|thumb|Рисунок Н.Конечно-элементная модель митрального клапана.|200px]]
 
  
таблица!!!!!!!!!!!
+
<gallery widths=330px heights=300px perrow = 2>
 +
Файл:Mesh.png|Рисунок 6.Конечно-элементная модель митрального клапана.
 +
Файл:MKE.PNG|Рисунок 7.Параметры конечно-элементной модели.
 +
</gallery>
  
 
==Начальные и граничные силовые условия==  
 
==Начальные и граничные силовые условия==  
  
Начальные и граничные условия задачи будем ставить исходя из реальных условий работы сердца. В начальный момент расчета клапан находится в ненапряженном состоянии, что соответствует переходу от этапа наполнения к этапу систолы предсердий (Таблица 1).
+
Начальные и граничные условия задачи будем ставить исходя из реальных условий работы сердца. В начальный момент расчета клапан находится в ненапряженном состоянии, что соответствует переходу от этапа наполнения к этапу систолы предсердий.
  
Граничные силовые условия схематично отображены на рис.14. Для митрального кольца ограничены перемещения по трем трансляционным степеням свободы (A). Также ограничены перемещения (B) нижней части хорд, которой они крепятся к стенкам левого желудочка. В соответствии с описанными в параграфе 1.4 нагрузками на створки, к поверхности створок митрального клапана по нормали приложено поверхностное давление (C), обеспечивающее смыкание створок.
+
Граничные силовые условия схематично отображены на рис.8. Для митрального кольца ограничены перемещения по трем трансляционным степеням свободы (A). Также ограничены перемещения (B) нижней части хорд, которой они крепятся к стенкам левого желудочка. По нормали приложено поверхностное давление (C), обеспечивающее смыкание створок.
  
[[Файл:File2.png|thumb|Рисунок Н.Граничные силовые условия.|200px]]
+
<gallery widths=330px heights=300px perrow = 1>
 +
Файл:File2.png|Рисунок 8.Граничные силовые условия.
 +
</gallery>
  
 
==Результаты==
 
==Результаты==
 +
 +
Ниже приведены анимации, иллюстрирующие полный цикл работы митрального клапана
 +
 +
<gallery widths=500px heights=400px perrow = 2>
 +
Файл:Movie 200 08(1).gif
 +
Файл:Movie2 200 08(1).gif
 +
</gallery>
 +
 +
Наибольшие напряжения наблюдаются во время перехода от фазы напряжения к фазе изгнания на 0.302 сек расчета, в этот момент на створки действует результирующее давление 16 кПа, именно этот момент считается полным закрытием клапана. В момент полного закрытия возникает колебание створок, которое вызвано тем, что скорость потока крови резко падает и не может преодолеть закрытый клапан. И кровь, и створки клапана обладают импульсом, который сначала преобразуется в энергию деформации, затем возвращается в виде ускорения потока, а заем снова преобразуется в энергию деформации и так до тех пор, пока клапан не достигнет устойчивого равновесия.
 +
 +
Смыкание клапана подтверждено проверкой статуса контактных элементов (рис. 9) в момент пиковых напряжений. Также на рис. 10 изображено серединное сечение явно описывающее плотное смыкание клапана.
 +
 +
<gallery widths=500px heights=400px perrow = 2>
 +
Файл:Srez.png|Рисунок 9.Серединное сечение клапана в момент максимального смыкания клапана.
 +
Файл:Pres.png|Рисунок 10.Контактное давление в момент максимального смыкания клапана.
 +
</gallery>
 +
 +
Напряжения на передней створке всегда больше чем напряжения, возникающие на задней. В целом, значения напряжений варьируются в пределах от 13 кПа в период напыления желудочка до 637 кПа в период полного смыкания клапана. Этот результат хорошо согласуется с данными, полученными в статьях [7][8][9], посвященных исследованиям митрального клапана.
 +
 +
Также, в рамках данной задачи был проведен анализ влияния устройства “Клип” на створки митрального клапана при его нормальной работе. “Клип” моделировался в виде точечной массы с заданной областью влияния. Устройство было установлено на задней створке в центре (рис. 11).
 +
 +
<gallery widths=330px heights=300px perrow = 1>
 +
Файл:Mass.png|Рисунок 11. Расположение точечной массы на поверхности задней створки: малая сфера – область установки “Клипа”.
 +
</gallery>
 +
 +
Масса устройства рассчитывается по формуле:
 +
 +
<big><math> m= 4 l_с ρ π r^2 </math></big>
 +
 +
где l_с – максимальное расстояние от митрального кольца до свободного края створки, ρ = 6.4 г/см3 – плотность нитинола, r – радиус нитиноловой проволоки.
 +
 +
Таким образом, масса скрепки может варьироваться от 0.1 до 0.4 грамм. В работе рассмотрены 3 случая: а) масса скрепки - 0.1 грамм, что соответствует проволоке с радиусом 0.5 мм; б) масса скрепки - 0.23 грамма, радиус - 0.75 мм; в) масса скрепки - 0.4 грамма, радиус – 1 мм. Для данных трех типов скрепки был проведены расчет и сравнение полученных результатов со случаем, когда на створке нет установленного “Клипа”.
 +
 +
Анализ перемещений вдоль линии, указанной на рис.12а, показал, что максимальное расхождение результатов составляет 0.18% и обнаружено оно при сравнении случая без “Клипа” и случая в) Мс = 0.4 г. Это говорит о том, что установка скрепки не оказывает значительного влияния на перемещения створки митрального клапана при его нормальном функционировании.
 +
 +
На графике 12б приведены значения напряжений на линии установки “Клипа” (рис. 12а) для трех случаев в сравнении с решением, когда на створке нет “Клипа”.
 +
 +
<gallery widths=530px heights=300px perrow = 2>
 +
Файл:Path.png|Рисунок 12а.Линия вывода напряжений вдоль поверхности створки.
 +
Файл:Stress path1.PNG|Рисунок 12б.График зависимости напряжения от координаты на рассматриваемой линии для трех видов “Клипа” и створки без него.
 +
</gallery>
 +
 +
Для случаев, а) и б) не наблюдается большого расхождения с данными для решения без учета скрепки. Однако при увеличении массы наблюдается расхождение результатов в верхней области клапана. Максимальное значение расхождения результатов – 5.11% обнаружено в случае в) когда масса скрепки равна 0.4 г. В статье Anwarul Hasan “Biomechanical properties of native and tissue engineered heart valve constructs” [12] приведено значение динамического предела прочности 0.9 МПа для материала створок митрального клапана. Таким образом, можно сделать вывод, что установка “Клипа” не повлечет за собой появление дополнительных растягивающих напряжений на створках клапана, способных привести к появлению необратимой деформации створок митрального клапана.
  
 
==Обработка данных c компьютерного томографа ==
 
==Обработка данных c компьютерного томографа ==
Строка 85: Строка 138:
 
а) Перевод облака точек из формата DICOM в формат STL.
 
а) Перевод облака точек из формата DICOM в формат STL.
  
Принцип действия компьютерного томографа заключается в одновременном выполнении трех действий: непрерывного вращения вокруг тела пациента рентгеновской трубки, испускающей рентгеновское излучение; регистрации этого излучения, проходящего сквозь тело человека, специальными детекторами-матрицами; непрерывного движения кушетки вдоль продольной оси вместе с лежащим на ней человеком. После прохождения через тело пациента лучи фиксируются матрицами-детекторами, преобразуются в электрические сигналы, и передаются на компьютер. Компьютер томографа обрабатывает эту информацию, поступившую с детекторов излучения, и в результате создается двухмерное изображение поперечного сечения тела на разных уровнях, так называемые "срезы"(рисунок 21).  
+
Принцип действия компьютерного томографа заключается в одновременном выполнении трех действий: непрерывного вращения вокруг тела пациента рентгеновской трубки, испускающей рентгеновское излучение; регистрации этого излучения, проходящего сквозь тело человека, специальными детекторами-матрицами; непрерывного движения кушетки вдоль продольной оси вместе с лежащим на ней человеком. После прохождения через тело пациента лучи фиксируются матрицами-детекторами, преобразуются в электрические сигналы, и передаются на компьютер. Компьютер томографа обрабатывает эту информацию, поступившую с детекторов излучения, и в результате создается двухмерное изображение поперечного сечения тела на разных уровнях, так называемые "срезы"(рисунок 13).  
  
[[Файл:Dicom.PNG|thumb|Рисунок Н.Снимок компьютерного томографа.|200px]]
+
<gallery widths=330px heights=300px perrow = 1>
 +
Файл:Dicom.PNG|Рисунок 13.Снимок компьютерного томографа.
 +
</gallery>
  
Если сравнить разрешение магнитно-резонансной томографии, компьютерной томографии и компьютерной томографии, проведенной на малогабаритном компьютерном томографе (таблица 4), можно сделать вывод, что для получения анатомически точной модели митрального клапана необходим именно малогабаритный компьютерный томограф, т.к. только он позволяет обнаружить хорды митрального клапана.
+
Если сравнить разрешение магнитно-резонансной томографии, компьютерной томографии и компьютерной томографии, проведенной на малогабаритном компьютерном томографе (рис. 14), можно сделать вывод, что для получения анатомически точной модели митрального клапана необходим именно малогабаритный компьютерный томограф, т.к. только он позволяет обнаружить хорды митрального клапана.
  
таблица!!!!!!!!!!!
+
<gallery widths=600px heights=60px perrow = 1>
 +
Файл:CT.PNG|Рисунок 14.Сравнение разрешения для МРТ, КТ и мКТ.
 +
</gallery>
  
[[Файл:Bone.PNG|thumb|Рисунок Н. STL модель части позвоночника.|200px]]
+
Снимки компьютерного томографа (рисунок 13) являются визуализацией DICOM данных полученных при проведении обследования. DICOM (англ. Digital Imaging and Communications in Medicine) — отраслевой стандарт создания, хранения, передачи и визуализации медицинских изображений и документов обследованных пациентов.
  
Снимки компьютерного томографа (рисунок 21) являются визуализацией DICOM данных полученных при проведении обследования. DICOM (англ. Digital Imaging and Communications in Medicine) — отраслевой стандарт создания, хранения, передачи и визуализации медицинских изображений и документов обследованных пациентов.  
+
<gallery widths=330px heights=300px perrow = 1>
 +
Файл:Bone.PNG|Рисунок 15. STL модель части позвоночника.
 +
</gallery>
  
С помощью программного пакета 3D Slicer, путем обработки DICOM файлов, построена STL модель части позвоночника человека (рисунок 22). Т.к. полученная модель имеет много лишних поверхностей и неровностей, вызванных шумовыми эффектами при проведении томографии, с помощью программы MeshLab модель была отфильтрована (рисунок 23).
+
С помощью программного пакета 3D Slicer, путем обработки DICOM файлов, построена STL модель части позвоночника человека (рисунок 15). Т.к. полученная модель имеет много лишних поверхностей и неровностей, вызванных шумовыми эффектами при проведении томографии, с помощью программы MeshLab модель была отфильтрована (рисунок 16).
  
[[Файл:Filter.PNG|thumb|Рисунок Н. Сравнение кол-ва поверхностей до фильтрации и после.|200px]]
+
<gallery widths=600px heights=300px perrow = 1>
 +
Файл:Filter.PNG|Рисунок 16. Сравнение кол-ва поверхностей до фильтрации и после.
 +
</gallery>
  
 
б) Создание твердотельной геометрии из STL.
 
б) Создание твердотельной геометрии из STL.
  
 
Формат STL широко используется для хранения трехмерных моделей объектов для использования в технологиях быстрого прототипирования. Информация об объекте хранится как список треугольных граней, которые описывают его поверхность, и их нормалей. Но для использования при проведении расчетов в инженерных пакетах программ требуется построение твердотельного геометрии CAD модели. Таким образом, с помощью программы ANSYS SpaceClaim вышеуказанная STL модель была конвертирована в CAD модель, представляющая собой твердотельную геометрию.
 
Формат STL широко используется для хранения трехмерных моделей объектов для использования в технологиях быстрого прототипирования. Информация об объекте хранится как список треугольных граней, которые описывают его поверхность, и их нормалей. Но для использования при проведении расчетов в инженерных пакетах программ требуется построение твердотельного геометрии CAD модели. Таким образом, с помощью программы ANSYS SpaceClaim вышеуказанная STL модель была конвертирована в CAD модель, представляющая собой твердотельную геометрию.
 +
 +
<gallery widths=530px heights=300px perrow = 1>
 +
Файл:Bone.gif
 +
</gallery>
  
 
==Ограничения и допущения==
 
==Ограничения и допущения==
Строка 115: Строка 180:
 
В рамках данной задачи выполнено численное моделирование работы митрального клапана в сердце человека. По анатомическим атласам построена балочно-оболочечная геометрическая модель с учетом неоднородности распределения толщины клапана по поверхности створок. С помощью программной системы конечно-элементного анализа ANSYS Mechanical проведено моделирование для полного цикла работы митрального клапана. При численном решении данной задачи был выбран тип анализа Transient structural (нестационарный структурный анализ), позволяющий определять изменяющиеся во времени перемещения, деформации, напряжения и внутренние усилия в теле под воздействием нестационарных нагрузок. При моделировании материала створок митрального клапана была выбрана линейная изотропная модель.
 
В рамках данной задачи выполнено численное моделирование работы митрального клапана в сердце человека. По анатомическим атласам построена балочно-оболочечная геометрическая модель с учетом неоднородности распределения толщины клапана по поверхности створок. С помощью программной системы конечно-элементного анализа ANSYS Mechanical проведено моделирование для полного цикла работы митрального клапана. При численном решении данной задачи был выбран тип анализа Transient structural (нестационарный структурный анализ), позволяющий определять изменяющиеся во времени перемещения, деформации, напряжения и внутренние усилия в теле под воздействием нестационарных нагрузок. При моделировании материала створок митрального клапана была выбрана линейная изотропная модель.
  
Полученные результаты для напряжений, возникающих на створках хорошо согласуются с данными, полученными в статьях [7][8][9], посвященных моделированию работы митрального клапана. Так же, в рамках численного моделирования было доказано, что клапан плотно смыкается во время перехода от фазы напряжения к фазе изгнания на 0.302 сек расчета, это совпадает данными для цикла работы клапана, приведенными в Таблице 1 (п.1.4).
+
Полученные результаты для напряжений, возникающих на створках хорошо согласуются с данными, полученными в статьях [7][8][9], посвященных моделированию работы митрального клапана. Так же, в рамках численного моделирования было доказано, что клапан плотно смыкается во время перехода от фазы напряжения к фазе изгнания на 0.302 сек расчета, это совпадает данными для цикла работы клапана.
  
 
Помимо моделирование нормально функционирующего клапана, проведено моделирование работы клапана с устройством “Клип” на задней створке. Анализ полученных результатов позволят заявить, что установка “Клипа” не повлечет за собой появление дополнительных растягивающих напряжений, способных привести к необратимым деформациям створок митрального клапана.
 
Помимо моделирование нормально функционирующего клапана, проведено моделирование работы клапана с устройством “Клип” на задней створке. Анализ полученных результатов позволят заявить, что установка “Клипа” не повлечет за собой появление дополнительных растягивающих напряжений, способных привести к необратимым деформациям створок митрального клапана.

Текущая версия на 20:28, 20 июня 2017


Выпускная квалификационная работа

Выполнил: студент группы 43604/1 М.Д. Степанов

Руководитель: кандидат физ.-мат. наук О.С. Лобода

Соруководитель: руководитель направления HPC ЗАО «КАДФЕМ Си-Ай-Эс» Ю.В. Новожилов

Аннотация[править]

В рамках данной задачи выполнено численное моделирование работы митрального клапана в сердце человека. По анатомическим атласам построена балочно-оболочечная геометрическая модель с учетом неоднородности распределения толщины клапана по поверхности створок. С помощью программной системы конечно-элементного анализа ANSYS Mechanical проведено моделирование для полного цикла работы митрального клапана.

Строение митрального клапана[править]

Митральный клапан состоит из фиброзного кольца, двух створок, хорд и папиллярных мышц (рисунок 1). Главная его задача – контроль потока крови от левого предсердия к левому желудочку. Во время систолы желудочков, митральный клапан закрывается, чтобы предотвратить регургитацию (обратный ток) крови в левое предсердие.

Хордами называют сухожильные соединительные волокна, которые скрепляют свободные края створок митрального клапана с папиллярными мышцами, расположенными на внутренней поверхности левого желудочка. Во время сокращения желудочков, папиллярные мышцы сокращаются и натянутые хорды предотвращают пролапсирование митрального клапана.

Пролапс митрального клапана[править]

Пролапс митрального клапана (ПМК) — это порок сердца, при котором происходит прогиб створок митрального клапана в левое предсердие во время сокращения левого желудочка. В норме во время сокращения предсердия клапан открыт и кровь поступает в желудочек. Затем клапан закрывается и происходит сокращение желудочка, за счет которого кровь выбрасывается в аорту. При ПМК прогиб створок клапана во время сокращения левого желудочка приводит к тому, что часть крови поступает обратно в предсердие. В редких случаях величина регургитации велика и требуется коррекция порока, вплоть до хирургического вмешательства.

Научный сотрудник детского госпиталя Бостона, преподаватель хирургии медицинского факультета Гарвардского университета, Васильев Николай Владимирович предложил проведение операции на работающем сердце с исправлением пролапса митрального клапана за счет специального устройства “Клип”, закрепленного на створке клапана и тем самым предотвращающего провисание створок клапана в область левого желудочка (рисунок 3).

В итоге, полный цикл лечения больного будет выглядеть следующим образом: при обнаружении пролапса митрального клапана пациента направляют на обследование компьютерным томографом высокого разрешения, после чего данные с томографа обрабатываются и строится 3D модель митрального клапана, после этого проводится анализ напряженно-деформированного состояния и принятие решения об установке устройства “Клип”.

Цель и задачи работы[править]

Целью данной работы является исследование распределения напряжений на створках нормально функционирующего митрального клапана. Это позволит определить оптимальное расположение устройства “Клип” для исправления пролапса. В связи с поставленной целью в работе решаются следующие задачи:

• Построить геометрическую модель митрального клапана;

• Выбрать подходящий способ моделирования работы клапана с помощью Метода Конечных элементов;

• Провести моделирование работы нормально функционирующего митрального клапана и проанализировать полученные результаты;

• Провести моделирование работы митрального клапана с устройством “Клип” на одной из створок и проанализировать полученные результаты;

• Выполнить перевод данных с компьютерного томографа в твердотельную CAD модель на примере части позвоночника человека;

Тип анализа[править]

Так как описанная выше задача является нестационарной задачей механики, при численном решении выбран тип анализа - Transient Structural Analysis (нестационарный структурный анализ). Данный тип анализа позволяет определять изменяющиеся во времени перемещения, деформации, напряжения и внутренние усилия в теле под воздействием нестационарных нагрузок. Transient Structural Analysis может быть использован для решения как линейных, так и нелинейных задач: большие деформации, пластичность, контакты, гиперупругость и т.д. Этот тип анализа используется для определения изменяющихся во времени перемещений, деформаций, напряжений и сил в объекте. Временной масштаб таков, что инерционные эффекты или эффекты затухания важны при решении задачи.

Геометрическая модель митрального клапана[править]

Для моделирования в конечно-элементном пакете ANSYS требуется построение расчетной модели. Модель митрального клапана может быть получена двумя методами: компьютерная томография с высоким разрешением, либо созданная вручную 3D модель по анатомическим альбомам и медицинским справочникам. В данной работе геометрическая модель митрального клапана выполнена c использованием программы ANSYS SpaceClaim. Достоверные размеры клапана были взяты из статей, направленных на изучение анатомии клапанов сердца [6].

Неоднородное распределение толщины( рисунок 5) было реализовано с помощью опции “External Data”, которая позволяет пользователям импортировать данные в текстовом формате из внешних источников или программ сторонних разработчиков в приложения ANSYS. Процедура импорта заключается в том, что пользователь задаёт программе величину толщины в указанной точке, и затем, это значение интерполируется на узлах модели, расположенных в указанном диапазоне.

Конечно-элементная модель[править]

По описанной выше геометрической модели была построена конечно-элементная модель митрального клапана (рисунок 6).

Начальные и граничные силовые условия[править]

Начальные и граничные условия задачи будем ставить исходя из реальных условий работы сердца. В начальный момент расчета клапан находится в ненапряженном состоянии, что соответствует переходу от этапа наполнения к этапу систолы предсердий.

Граничные силовые условия схематично отображены на рис.8. Для митрального кольца ограничены перемещения по трем трансляционным степеням свободы (A). Также ограничены перемещения (B) нижней части хорд, которой они крепятся к стенкам левого желудочка. По нормали приложено поверхностное давление (C), обеспечивающее смыкание створок.

Результаты[править]

Ниже приведены анимации, иллюстрирующие полный цикл работы митрального клапана

Наибольшие напряжения наблюдаются во время перехода от фазы напряжения к фазе изгнания на 0.302 сек расчета, в этот момент на створки действует результирующее давление 16 кПа, именно этот момент считается полным закрытием клапана. В момент полного закрытия возникает колебание створок, которое вызвано тем, что скорость потока крови резко падает и не может преодолеть закрытый клапан. И кровь, и створки клапана обладают импульсом, который сначала преобразуется в энергию деформации, затем возвращается в виде ускорения потока, а заем снова преобразуется в энергию деформации и так до тех пор, пока клапан не достигнет устойчивого равновесия.

Смыкание клапана подтверждено проверкой статуса контактных элементов (рис. 9) в момент пиковых напряжений. Также на рис. 10 изображено серединное сечение явно описывающее плотное смыкание клапана.

Напряжения на передней створке всегда больше чем напряжения, возникающие на задней. В целом, значения напряжений варьируются в пределах от 13 кПа в период напыления желудочка до 637 кПа в период полного смыкания клапана. Этот результат хорошо согласуется с данными, полученными в статьях [7][8][9], посвященных исследованиям митрального клапана.

Также, в рамках данной задачи был проведен анализ влияния устройства “Клип” на створки митрального клапана при его нормальной работе. “Клип” моделировался в виде точечной массы с заданной областью влияния. Устройство было установлено на задней створке в центре (рис. 11).

Масса устройства рассчитывается по формуле:

[math] m= 4 l_с ρ π r^2 [/math]

где l_с – максимальное расстояние от митрального кольца до свободного края створки, ρ = 6.4 г/см3 – плотность нитинола, r – радиус нитиноловой проволоки.

Таким образом, масса скрепки может варьироваться от 0.1 до 0.4 грамм. В работе рассмотрены 3 случая: а) масса скрепки - 0.1 грамм, что соответствует проволоке с радиусом 0.5 мм; б) масса скрепки - 0.23 грамма, радиус - 0.75 мм; в) масса скрепки - 0.4 грамма, радиус – 1 мм. Для данных трех типов скрепки был проведены расчет и сравнение полученных результатов со случаем, когда на створке нет установленного “Клипа”.

Анализ перемещений вдоль линии, указанной на рис.12а, показал, что максимальное расхождение результатов составляет 0.18% и обнаружено оно при сравнении случая без “Клипа” и случая в) Мс = 0.4 г. Это говорит о том, что установка скрепки не оказывает значительного влияния на перемещения створки митрального клапана при его нормальном функционировании.

На графике 12б приведены значения напряжений на линии установки “Клипа” (рис. 12а) для трех случаев в сравнении с решением, когда на створке нет “Клипа”.

Для случаев, а) и б) не наблюдается большого расхождения с данными для решения без учета скрепки. Однако при увеличении массы наблюдается расхождение результатов в верхней области клапана. Максимальное значение расхождения результатов – 5.11% обнаружено в случае в) когда масса скрепки равна 0.4 г. В статье Anwarul Hasan “Biomechanical properties of native and tissue engineered heart valve constructs” [12] приведено значение динамического предела прочности 0.9 МПа для материала створок митрального клапана. Таким образом, можно сделать вывод, что установка “Клипа” не повлечет за собой появление дополнительных растягивающих напряжений на створках клапана, способных привести к появлению необратимой деформации створок митрального клапана.

Обработка данных c компьютерного томографа[править]

Также, одной из задач, как было заявлено выше, является создание 3D модели используя данные, полученных с компьютерного томографа. Данный процесс можно разделить на два этапа: а) Перевод облака точек из формата DICOM в формат STL; б) Создание твердотельной геометрии из STL.

а) Перевод облака точек из формата DICOM в формат STL.

Принцип действия компьютерного томографа заключается в одновременном выполнении трех действий: непрерывного вращения вокруг тела пациента рентгеновской трубки, испускающей рентгеновское излучение; регистрации этого излучения, проходящего сквозь тело человека, специальными детекторами-матрицами; непрерывного движения кушетки вдоль продольной оси вместе с лежащим на ней человеком. После прохождения через тело пациента лучи фиксируются матрицами-детекторами, преобразуются в электрические сигналы, и передаются на компьютер. Компьютер томографа обрабатывает эту информацию, поступившую с детекторов излучения, и в результате создается двухмерное изображение поперечного сечения тела на разных уровнях, так называемые "срезы"(рисунок 13).

Если сравнить разрешение магнитно-резонансной томографии, компьютерной томографии и компьютерной томографии, проведенной на малогабаритном компьютерном томографе (рис. 14), можно сделать вывод, что для получения анатомически точной модели митрального клапана необходим именно малогабаритный компьютерный томограф, т.к. только он позволяет обнаружить хорды митрального клапана.

Снимки компьютерного томографа (рисунок 13) являются визуализацией DICOM данных полученных при проведении обследования. DICOM (англ. Digital Imaging and Communications in Medicine) — отраслевой стандарт создания, хранения, передачи и визуализации медицинских изображений и документов обследованных пациентов.

С помощью программного пакета 3D Slicer, путем обработки DICOM файлов, построена STL модель части позвоночника человека (рисунок 15). Т.к. полученная модель имеет много лишних поверхностей и неровностей, вызванных шумовыми эффектами при проведении томографии, с помощью программы MeshLab модель была отфильтрована (рисунок 16).

б) Создание твердотельной геометрии из STL.

Формат STL широко используется для хранения трехмерных моделей объектов для использования в технологиях быстрого прототипирования. Информация об объекте хранится как список треугольных граней, которые описывают его поверхность, и их нормалей. Но для использования при проведении расчетов в инженерных пакетах программ требуется построение твердотельного геометрии CAD модели. Таким образом, с помощью программы ANSYS SpaceClaim вышеуказанная STL модель была конвертирована в CAD модель, представляющая собой твердотельную геометрию.

Ограничения и допущения[править]

При выполнении вышеизложенного анализа, было принято несколько допущений. Во-первых, модель материала как хорд, так и створок должна обладать свойствами анизотропной гиперупругости. В случае с хордами, смоделировать гиперупругость не позволяет само определение элементов BEAM188 для моделирования балочных элементов. В целом, для построения качественной анизотропной гиперупругой модели материала требуется проведение ряда экспериментов для определения констант входящих в выражение для описание такой модели. В данной работе материал створок и хорд был смоделирован как линейный гиперупругий в первом приближении.

Во-вторых, для детального исследования поведения митрального клапана при работе сердца и определения положения устройства “Клип” на створке клапана требуется анатомически точная модель клапана, полученная из данных с компьютерного томографа высокого разрешения. В силу недоступности данного оборудования, геометрическая модель клапана была построена по анатомическим атласам с размерами, проверенными в статьях, направленных на изучение анатомии митрального клапана.

Выводы[править]

В рамках данной задачи выполнено численное моделирование работы митрального клапана в сердце человека. По анатомическим атласам построена балочно-оболочечная геометрическая модель с учетом неоднородности распределения толщины клапана по поверхности створок. С помощью программной системы конечно-элементного анализа ANSYS Mechanical проведено моделирование для полного цикла работы митрального клапана. При численном решении данной задачи был выбран тип анализа Transient structural (нестационарный структурный анализ), позволяющий определять изменяющиеся во времени перемещения, деформации, напряжения и внутренние усилия в теле под воздействием нестационарных нагрузок. При моделировании материала створок митрального клапана была выбрана линейная изотропная модель.

Полученные результаты для напряжений, возникающих на створках хорошо согласуются с данными, полученными в статьях [7][8][9], посвященных моделированию работы митрального клапана. Так же, в рамках численного моделирования было доказано, что клапан плотно смыкается во время перехода от фазы напряжения к фазе изгнания на 0.302 сек расчета, это совпадает данными для цикла работы клапана.

Помимо моделирование нормально функционирующего клапана, проведено моделирование работы клапана с устройством “Клип” на задней створке. Анализ полученных результатов позволят заявить, что установка “Клипа” не повлечет за собой появление дополнительных растягивающих напряжений, способных привести к необратимым деформациям створок митрального клапана.

Так же стоит отметить, что в рамках данной работы, на примере части позвоночника человека, реализован и отработан способ обработки данных с компьютерного томографа в твердотельную модель, которую в дальнейшем можно использовать при расчетах в программных системах конечно-элементного анализа. Данный способ, позволит в будущем построить анатомически точную модель митрального клапана по данным обследования компьютерным томографом.

В дальнейшем в рамках реализации данной задачи планируется использование несжимаемого, гиперупругого трансверсально-изотропного материала и построение геометрической модели клапана по данным с компьютерного томографа для более точного изучения поведения створок нормально функционирующего митрального клапана.

Список литературы[править]

1. World Health Organization. The world health report 2016. (http://www.who.int)

2. American Heart Association. Heart disease and stroke statistics Update 2005. (http://www.americanheart.org)

3. Gillinov A.M, Wierup P.N., Blackstone E.H., Bishay E.S., Cosgrove D.M., White J., Lytel B.W., and McCarthy P.M. Is repair preferable to replacement for ischemic mitral regurgitation? The Journal of Thoracic and Cardiovascular Surgery 2001; 122, 1125-1141

4. Sacks M.S., He Z., Baijens L., Wanant S., Shah P., Sugimoto H., and Yoganathan A.P. Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve. Annals of Biomedical Engineering 2002; 30, 1281-1290

5. https://ru.wikipedia.org/wiki/Сердечный_цикл

6. Д . С . Котович, И.Н. Стакан Анатомия митрального клапанного аппарата в норме и при дилатационной кардиомиопатии.

7. Kunzelman K.S., Einstein D.R. and Cochran R.P. Fluid-structure interaction models of mitral valve: function in normal and pathological states.

8. Stevanella, M., F. Maffessanti, C. A. Conti, E. Votta, A. Arnoldi, M. Lombardi, O. Parodi, E. G. Caiani, and A. Redaelli. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure.

9. Qian W. and Wei S. Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans.

10. Humphrey, J. D., Strumpf, R. K., and Yin, F. C. P., 1990a, "Determination of a constitutive relation for passive myocardium: I. A new functional form, ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 112, pp. 333-339.

11. Mohd Azrul Hisham Mohd Adib, Kahar Osman, Nur Hazreen Mohd Hasni, Oteh Maskon, Faradila Naim, Zulkifli Ahmad, Idris Sahat1and Ammar Nik Mu’tasim. Computational Simulation of Heart Valve Leaflet under Systole Condition using Fluid Structure Interaction Model.