Обсуждение:Механика дискретных сред — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
м
 
(не показаны 2 промежуточные версии 2 участников)
Строка 1: Строка 1:
О механике дискретных сред
+
[[ТМ|Кафедра ТМ]] > [[Научный справочник]] > [[Механика]] > [[Механика дискретных сред | МДС]] > [[Обсуждение:Механика дискретных сред | Обсуждение : МДС]] <HR>
  
На мой взгляд, на данный момент в более или менее сформировавшемся виде существует только [[Вычислительная Механика Дискретных Сред]] (ВМДС). Подтверждением этого факта являются большое количество книг по [[Молекулярная динамика|молекулярной динамике]], [[Метод дискретных элементов|методу дискреных элементов]], клеточных автоматов, Монте-Карло и тп. Фактически, в большинстве книг описываются различные численные методы решения задач [[Механика дискретных сред|механики дискретных сред]]. При этом единой стройной теории дискретных сред, подобной [[Механика сплошных сред|теории сплошных сред]], не существует (поправьте, если не прав). В классических книгах по молекулярной динамике, к примеру в книгах M.P. Allen "Computer simulation of liquids" и W.G. Hoover "Molecular dynamics: Lecture notes in physics", утверждается, что такой теорией является статистическая механика (физика). Для больших ситем, возможно, это и так, но что делать с наноструктурами или отдельными молекулами?   
+
;О механике дискретных сред
  
Таким образом, приходим к интересному заключению:[[Вычислительная Механика Дискретных Сред]] существует уже как минимум 50 лет (первая статья по молекулярной динамике была опубликована в 1957 г.), а соответствующей строгой теории дискретных сред еще нет?  
+
На мой взгляд, на данный момент в более или менее сформировавшемся виде существует только [[вычислительная механика дискретных сред]] (ВМДС). Подтверждением этого факта являются большое количество книг по молекулярной динамике, методу дискреных элементов, клеточных автоматов, Монте-Карло и тп. Фактически, в большинстве книг описываются различные численные методы решения задач [[Механика дискретных сред|механики дискретных сред]]. При этом единой стройной теории дискретных сред, подобной [[Механика сплошных сред|теории сплошных сред]], не существует (поправьте, если не прав). В классических книгах по молекулярной динамике, к примеру в книгах M.P. Allen "Computer simulation of liquids" и W.G. Hoover "Molecular dynamics: Lecture notes in physics", утверждается, что такой теорией является статистическая механика (физика). Для больших ситем, возможно, это и так, но что делать с наноструктурами или отдельными молекулами?   
 +
 
 +
Таким образом, приходим к интересному заключению: [[вычислительная механика дискретных сред]] существует уже как минимум 50 лет (первая статья по молекулярной динамике была опубликована в 1957 г.), а соответствующей строгой теории дискретных сред еще нет?  
  
 
Наверно  многие мне сразу возразят, что давно созданы механика Ньютона, Эйлера, Лагранжа, Гамильтона и т.п., описывающие поведение различных  дискретных систем. А вся, к примеру, молекулярная динамика (безусловно, являющаяся частью МДС) сводится просто к численному интегрированию перечисленных выше уравнений движения. Причина подобного восприятия МДС, как раз и заключается в том, что достаточно хорошо разработан только вычислительный вариант МДС. Отождествлять и даже ассоциировать МДС с численным интегрированием уравнений движения не следует. Механика Дискретных Сред несоизмеримо шире. Дело не только и не столько в том, какие уравнения решаются и какой численный метод используется, а в том как "как они пишутся" (как разрабатываются законы взаимодействия, ставятся граничные и начальные условия и тп.) и как анализируются и интерпретируются результаты.  
 
Наверно  многие мне сразу возразят, что давно созданы механика Ньютона, Эйлера, Лагранжа, Гамильтона и т.п., описывающие поведение различных  дискретных систем. А вся, к примеру, молекулярная динамика (безусловно, являющаяся частью МДС) сводится просто к численному интегрированию перечисленных выше уравнений движения. Причина подобного восприятия МДС, как раз и заключается в том, что достаточно хорошо разработан только вычислительный вариант МДС. Отождествлять и даже ассоциировать МДС с численным интегрированием уравнений движения не следует. Механика Дискретных Сред несоизмеримо шире. Дело не только и не столько в том, какие уравнения решаются и какой численный метод используется, а в том как "как они пишутся" (как разрабатываются законы взаимодействия, ставятся граничные и начальные условия и тп.) и как анализируются и интерпретируются результаты.  
Строка 19: Строка 21:
  
  
 
+
[[Category: Механика дискретных сред]]
[[Category: Механика]]
 

Текущая версия на 14:23, 24 августа 2016

Кафедра ТМ > Научный справочник > Механика > МДС > Обсуждение : МДС
О механике дискретных сред

На мой взгляд, на данный момент в более или менее сформировавшемся виде существует только вычислительная механика дискретных сред (ВМДС). Подтверждением этого факта являются большое количество книг по молекулярной динамике, методу дискреных элементов, клеточных автоматов, Монте-Карло и тп. Фактически, в большинстве книг описываются различные численные методы решения задач механики дискретных сред. При этом единой стройной теории дискретных сред, подобной теории сплошных сред, не существует (поправьте, если не прав). В классических книгах по молекулярной динамике, к примеру в книгах M.P. Allen "Computer simulation of liquids" и W.G. Hoover "Molecular dynamics: Lecture notes in physics", утверждается, что такой теорией является статистическая механика (физика). Для больших ситем, возможно, это и так, но что делать с наноструктурами или отдельными молекулами?

Таким образом, приходим к интересному заключению: вычислительная механика дискретных сред существует уже как минимум 50 лет (первая статья по молекулярной динамике была опубликована в 1957 г.), а соответствующей строгой теории дискретных сред еще нет?

Наверно многие мне сразу возразят, что давно созданы механика Ньютона, Эйлера, Лагранжа, Гамильтона и т.п., описывающие поведение различных дискретных систем. А вся, к примеру, молекулярная динамика (безусловно, являющаяся частью МДС) сводится просто к численному интегрированию перечисленных выше уравнений движения. Причина подобного восприятия МДС, как раз и заключается в том, что достаточно хорошо разработан только вычислительный вариант МДС. Отождествлять и даже ассоциировать МДС с численным интегрированием уравнений движения не следует. Механика Дискретных Сред несоизмеримо шире. Дело не только и не столько в том, какие уравнения решаются и какой численный метод используется, а в том как "как они пишутся" (как разрабатываются законы взаимодействия, ставятся граничные и начальные условия и тп.) и как анализируются и интерпретируются результаты.

To be continued...

В.А. Кузькин


Красиво написано, единственное, что я бы заменил: "Соответственно различается и математический объект – дифференциальные уравнения..."

Наверно лучше "Соответственно различается и математический АППАРАТ – дифференциальные уравнения"

В.А. Кузькин