Моделирование маятника Капицы — различия между версиями
Строка 6: | Строка 6: | ||
Движение маятника удовлетворяет уравнениям Эйлера — Лагранжа. Зависимость фазы маятника от времени определяет положение грузика[1]: | Движение маятника удовлетворяет уравнениям Эйлера — Лагранжа. Зависимость фазы маятника от времени определяет положение грузика[1]: | ||
::<math> | ::<math> | ||
− | \frac{\partial L}{\partial {\dot{\phi}}} = \frac{\partial L}{\partial {\phi}}, | + | \(\frac{\partial L}{\partial {\dot{\phi}}})'_t = \frac{\partial L}{\partial {\phi}}, |
</math> | </math> | ||
Дифференциальное уравнение, описывающие эволюцию фазы маятника | Дифференциальное уравнение, описывающие эволюцию фазы маятника |
Версия 10:02, 25 июня 2016
Виртуальная лаборатория>Моделирование маятника КапицыПостановка задачи
Ма́ятником Капицы называется система, состоящая из грузика, прикреплённого к лёгкой нерастяжимой спице, которая крепится к вибрирующему подвесу. Маятник носит имя академика и нобелевского лауреата П. Л. Капицы, построившего в 1951 г. теорию для описания такой системы. При неподвижной точке подвеса, модель описывает обычный математический маятник, для которого имеются два положения равновесия: в нижней точке и в верхней точке. При этом равновесие математического маятника в верхней точке является неустойчивым, и любое сколь угодно малое возмущение приводит к потере равновесия.
Уравнение движения
Движение маятника удовлетворяет уравнениям Эйлера — Лагранжа. Зависимость фазы маятника от времени определяет положение грузика[1]:
Дифференциальное уравнение, описывающие эволюцию фазы маятника
нелинейно из-за имеющегося в нем множителя
. Наличие нелинейного слагаемого может приводить к хаотическому поведению и появлению странных аттракторов.Графическая реализация
Ссылки
- Разработчик: Чигарев Григорий, Уткин Артем
- Виртуальная лаборатория
- Посмотреть код