Свободные колебания груза с массой зависящей от времени — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(См. также)
(Визуализация)
Строка 46: Строка 46:
 
Для визуализации воспользуемся [[Интерактивная модель простейшей колебательной системы|данной]] моделью груза на пружине.
 
Для визуализации воспользуемся [[Интерактивная модель простейшей колебательной системы|данной]] моделью груза на пружине.
 
Чтобы наблюдать эффект изменения/сохранения амплитуды, необходимо резко поменять массу системы.
 
Чтобы наблюдать эффект изменения/сохранения амплитуды, необходимо резко поменять массу системы.
 +
 +
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Spring/Spring_v2-1_release/Spring.html |width=645 |height=565 |border=0 }}

Версия 23:03, 21 июня 2016

Описание

Постановка задачи

Рассмотреть свободные колебания груза на пружинке с массой, зависящей от времени. Проанализировать полученные результаты.

Начальные сведения

Дифференциальное уравнение колебаний имеет вид: [math] m(t) \ddot x + c x=0[/math] ,где

[math] m(t) = \begin{cases} m_1 &\text{ $ t \lt t_0$}\\ m_2 &\text{ $ t \gt t_0$} \end{cases} [/math] - масса груза;
[math]c[/math] - жесткость пружины;
[math]x[/math] - отклонение от положения равновесия;

Решение

Для решения задачи Коши возьмем начальные условия в виде [math]x(0) = x_0, \dot x(0)= 0[/math]. Тогда для [math]t \lt t_0[/math] решение будет иметь вид:

[math]x_1 = x_0 \cos \omega_1 t [/math]

А для [math]t \gt t_0[/math] решение имеет вид:

[math]x_2 = A \cos \omega_2 t + B \sin \omega_2 t [/math]

где константы интегрирования необходимо найти из условия сшивания:

[math] x_1(t_0)=x_2(t_0) [/math]
[math] \dot x_1(t_0)=\dot x_2(t_0) [/math]

Запишем эти условия в виде системы линейных уравнений:

[math] \begin{cases} A \cos \omega_2 t_0 + B \sin \omega_2 t_0 = x_0 \cos \omega_1 t_0 \\ \omega_2(-A \sin \omega_2 t_0 + B \cos \omega_2 t_0) = -\omega_1 x_0 \sin \omega_1 t_0\\ \end{cases} [/math]

Рассмотрим два частных случая:

1) [math] \cos \omega_1 t_0 = 1 , \sin \omega_1 t_0 = 0 [/math]
2) [math] \cos \omega_1 t_0 = 0 , \sin \omega_1 t_0 = 1 [/math]

Для первого случая получим решение в виде:

[math]x_2 = x_0 \cos \omega_2 (t-t_0) [/math]

Видим, что амплитуда колебаний остается прежней, а частота колебаний меняется. Для второго случая решение имеет вид:

[math]x_2 = x_0 \sqrt{\frac{m_2}{m_1}} \sin \omega_2 (t+t_0) [/math]

В данном случае видим, что амплитуда зависит от корня из отношения масс. Это значит что она может как уменьшиться, так и увеличиться.

Визуализация

Для визуализации воспользуемся данной моделью груза на пружине. Чтобы наблюдать эффект изменения/сохранения амплитуды, необходимо резко поменять массу системы.