Влияние граничных условий на статистические характеристики — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Строка 30: | Строка 30: | ||
*Разработчик: [[Морозова Анна]] | *Разработчик: [[Морозова Анна]] | ||
*[http://tm.spbstu.ru/%D0%92%D0%B8%D1%80%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BB%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D1%8F Виртуальная лаборатория] | *[http://tm.spbstu.ru/%D0%92%D0%B8%D1%80%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BB%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D1%8F Виртуальная лаборатория] | ||
− | *[https://bitbucket.org/Aveeanka/] | + | *[https://bitbucket.org/Aveeanka/ Посмотреть код] |
Версия 12:55, 31 мая 2016
Виртуальная лаборатория>Влияние граничных условий на статистические характеристикиПостановка задачи
Рассматривается цепочка, состоящая из частиц одинаков масс, соединенных одинаковыми пружинами. Уравнение движения имеет вид:
- ,
где
- перемещение, - собственная частота.- ,
где Метод интегрирования Верле. Реализованы фиксированные и периодические граничные условия. В качестве статистической характеристики выбрана дисперсия перемещения. Она рассчитывается по следующей формуле:
- жесткость пружины, - масса частицы. Для решения данного дифференциального уравнения использовали метод Верле:- ,
где
- среднее перемещение, - количество частиц.На графике "Dynamics of lineral system" сверху представлена цепочка частиц с фиксированными граничными условиями, снизу - с периодическими.
На графике "Dispersion of displacement" синим цветом показывается поведение дисперсии перемещения при фиксированных граничных условиях, красным - дисперсии перемещения при периодических граничных условиях.
Графичекая реализация
Ссылки
- Разработчик: Морозова Анна
- Виртуальная лаборатория
- Посмотреть код