|
|
(не показано 16 промежуточных версий 2 участников) |
Строка 1: |
Строка 1: |
− | [[Виртуальная лаборатория]] > [[Heat transfer in a 1D harmonic crystal]] <HR>
| + | This is an old version of the page, please see the new versions: |
| | | |
− | | + | * [[:en:Heat transfer in a 1D harmonic crystal|Heat transfer in a 1D harmonic crystal]] |
− | Theory: [[А.М. Кривцов|A.M. Krivtsov]]
| + | * [[:en:Heat transfer in a 1D harmonic crystal: periodic temperature|Heat transfer in a 1D harmonic crystal: periodic temperature]] |
− |
| + | * [[:en:Heat transfer in a 1D harmonic crystal: regular temperature|Heat transfer in a 1D harmonic crystal: regular temperature]] |
− | Programming: [[Д.В. Цветков|D.V. Tsvetkov]]
| |
− | | |
− | == Model ==
| |
− | | |
− | We consider a one-dimensional crystal, described by the following equations of motion:
| |
− | :<math> | |
− | \ddot{u}_i = \omega_0^2(u_{i-1}-2u_i+u_{i+1})
| |
− | ,\qquad \omega_0 = \sqrt{C/m},
| |
− | </math>
| |
− | where
| |
− | <math>u_i</math> is the displacement of the <math>i</math>th particle,
| |
− | <math>m</math> is the particle mass,
| |
− | <math>C</math> is the stiffness of the interparticle bond.
| |
− | The crystal is infinite: the index <math>i</math> is an arbitrary integer.
| |
− | The initial conditions are
| |
− | :<math>
| |
− | u_i|_{t=0} = 0
| |
− | ,\qquad
| |
− | \dot u_i|_{t=0} = \sigma(x)\varrho_i
| |
− | ,
| |
− | </math>
| |
− | where <math>\varrho_i</math> are independent random values with zero expectation and unit variance; <math>\sigma</math> is variance of the initial velocities of the particles, which is a slowly varying function of the spatial coordinate <math>x=ia</math>, where <math>a</math> is the lattice constant. These initial conditions correspond to an instantaneous temperature perturbation, which can be induced in crystals, for example, by an ultrashort laser pulse.
| |
− | | |
− | == Macroscopic equations ==
| |
− | | |
− | — Heat (Fourier): <math>\dot T = \beta T''</math>
| |
− | | |
− | — Heat wave (MCV): <math>\ddot T +\frac1\tau\dot T = \frac\beta\tau T''</math>
| |
− | | |
− | — Wave (d’Alembert): <math>\ddot T = c^2 T''</math>
| |
− | | |
− | — Reversible (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math>
| |